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1, INTRODUCTION

The on-going effort whose various facets have been described

e.g. in [Blaha, 1975, 1977, 1979, 1980] is concerned with the adjustment

of satellite altimeter data in two steps, the first performed in terms of

a truncated set of spherical-harmonic (S.H.) potential coefficients and

the second performed in terms of point-mass (P.M.) magnitudes as parameters.

The emphasis has been shifted recently toward SEASAT altimeter data as the

main source of observed quantities in the first adjustment; gravity anoma-

lies and other sources of geopotential information have been included via

the weighted S.H. coefficients. At this stage (first adjustment), six

weighted state vector (s.v.) parameters per orbital arc are also included

in the simultaneous least-squares process. The first adjustment is global

in character. One of its most important products is a revised set of S.H.

coefficients which may be of interest in itself, and which is especially

useful in predicting geoid undulations, gravity anomalies and other quanti-

ties related to the disturbing potential (such as deflections of the verti-

cal or gravity gradients) on the global scale.

The data for the second adjustment consist mainly of the residuals

from the first adjustment, although other quantities (gravity anomalies,

deflections of the vertical, etc.) can enter this phase independently. In

this process a more detailed, but regional, geoid is derived. Predictions

of the other quantities just mentioned can also be made in the region of

interest. A given set of point masses has a chosen distribution which, as

a rule, is uniform and is characterized by the 1.6:1 depth-side ratio.
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Denser sets of point masses can be superimposed on the basic set, leading

to an even more detailed description of the gravity field in specific sub-

regions. This can be related to the mean values of geoid undulations

derived, for blocks of a certain size, from satellite altimetry. In some

areas of pronounced and varied geoidal relief, such as in the Puerto Rico

trench area, the differences between the mean and the actual undulations

could become large and, thus, smaller blocks might be chosen to describe

the geoid. From geoid undulations (or their means) one could derive other

quantities related to the disturbing potential, upon using the appropriate

cross-covariance functions. The present approach with point masses cir-

cumvents, by construction, the need for these functions.

One could contemplate using the P.M. parameters directly in con-

junction with the ellipsoidal reference field, without the intermediary of

the first adjustment. However, in addition to losing the possibility of re-

vising the values of the S.H. coefficients and the s.v. parameters as well

as of obtaining global predictions of the desired geophysical quantities,

one would also introduce modeling errors due to the spherical approxima-

tion in the P.M. model; on the other hand, the "anomalous" quantities

relative to the S.H. field are much smaller (an order of magnitude) than

those relative to the reference field, which renders the spherical approxi-

mation inconsequential. It can also be mentioned that certain geoidal

detail is already described by the actual altimeter observations in con-

junction with the adjusted s.v. parameters. However, this detail is pro-

vided only along one dimension (i.e., along the satellite pass). Other

means, such as the P.M. parameters, are needed to describe, to within a
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desired resolution, the geoidal detail as well as other geophysical

quantities in two dimensions. One final product obtained with the P.M.

adjustment superimposed on the S.H. adjustment is a set of contour maps

based on predicted values for geoid undulations, gravity anomalies, etc.

A typical example is a geoidal map in a region containing point masses.

This region exhibits detailed geoidal features, while far from it the

geoid described by the potential coefficients alone is very smooth; the

transition from one region to the other is gradual.

In recent adjustments of GEOS-3 and SEASAT altimeter data, the

S.H. model has consisted of a (14,14) set of potential coefficients and the

P.M. model has consisted of some 150-200 point masses distributed essential-

ly in an equilateral grid covering a region of interest such as the North

Atlantic. In agreement with an earlier statement, the depth of point

masses has been stipulated to be approximately 1.6 times their horizontal

separation and only their magnitudes have been subjected to an adjustment.

It is considered that good predicted values to within the desired resolu-

tion for both N (geoid undulations) and Ag (gravity anomalies) can be ob-

tained if the shortest half-wavelength to be represented by the P.M. ad-

justment corresponds to two point masses in each dimension of the P.M.

grid. From this point of view, if the point masses form a 20 x20 grid,

the geoidal resolution is regarded with confidence to within 40 features.

Details on the real data reductions recently performed in this fashion

using GEOS-3 and SEASAT altimetry can be found in [Blaha and Hadgigeorge,

1979] and (Hadgigeorge et al., 1980], respectively.

In this study, the adjustment capabilities are extended with
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specific considerations given to SEASAT altimetry and its precision.

Chapter 2 describes several improvements in the existing adjustment al-

gorithm. Criteria are developed with regard to the maximum and minimum

allowable length of satellite arcs, and to the selection of a suitable

observational density on an arc. A feature leading to significant reduc-

tions in the computer run-time requirements is developed, characterized

by a reduction in the number of constants entering the orbital integrator

in the exercise of the short-arc algorithm. Other features are discussed,

such as the possibility of reducing the number of s.v. parameters from

six to four per arc, or the option to artificially lower the input sigma

(square root of the variance) of the s.v. parameters in order to prevent

them from absorbing the tidal effects, in case the latter are not included

in the first adjustment.

The tidal and other sea surface effects are subsequently dis-

cussed in Chapter 3. Due to a higher precision of SEASAT altimeter and the

satellite ephemeris as compared to the GEOS-3 system, modeling errors

caused by certain sea level changes can no longer be ignored. The most im-

portant changes are those caused by the tide-generating forces of the moon

and the sun. The long-period, diurnal and semidiurnal tidal effects are

initially discussed for a theoretical model (equilibrium tide). Based on

the relative importance of these effects the decision is made as to

which of them are to be described herein and which will be described in

the next report. The chapter culminates with a practical tidal adjustment

and its incorporation into the SEASAT adjustment model. A possible inclu-

sion of a few other sea surface effects is also considered.
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2. IMPROVEMENTS AND FURTHER DEVELOPMENT OF SATELLITE
ALTIMETRY ADJUSTMENT ALGORITHM

When addressing the problem of extending the altimetry adjust-

ment algorithm from GEOS-3 to SEASAT, one should keep in mind a better

global coverage and a higher resolution power of the latter (0.1 to 0.2m

altimeter sigma for SEASAT as compared to about lm for GEOS-3). Further-

more, the input state vector (s.v.) parameters for each satellite arc, ob-

tained from the precise ephemeris, are characterized by approximately 2m

sigma in position as compared with 10 to 20m sigma associated with the

broadcast ephemeris used previously.

Maximum arc-length criterion. In considering the above differ-

ences, a new criterion for the length of satellite arcs has been established.

This criterion has resulted from computer simulations and has been confirmed

in principle during the real data reductions. Since the short-arc concept

is the cornerstone of all the altimeter reductions performed in the first

step (S.H. adjustment), it will be now briefly reviewed.

In the short-arc adjustment algorithm, developed for satellite

altimetry by Brown [1973], the S.H. coefficients entering the orbital inte-

grator have the role of (fixed) constants. Since these constants have

errors associated with them which cannot be corrected or modified by the

adjustment, one is faced with a model deficiency which may or may not be

detrimental to the altimeter adjustment. If the arc is very short, only a

few low-degree and order coefficients will have any bearing on its shape.

The altimeter misclosures (constant terms) in the observation equations
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will not be affected to any significant degree because such coefficients

are known to a high degree of accuracy. However, as the arc becomes longer

the misclosure distortions tend to get larger, increasing from zero at the

mid-arc epoch to a maximum at the extremities. They are of the same sign

and, when plotted, give rise to a curve resembling a parabola and indica-

ting an orbital curvature error. This is imputable to errors in higher-

degree and order coefficients including the truncation of the set. There-

fore, the errors in the initial S.H. coefficients propagate into the mis-

closures of observation equations as a function of the errors' magnitudes

and of the arc's length.

The above qualitative statement was at the root of the study

performed in view of SEASAT altimetry in Chapter 3 of [Blaha, 1979] and

summarized in [Blaha, 1979']. Various computer simulations have indicated

that the systematic errors resulting from the truncation of the coefficients

beyond the degree and order (6,6) can exceed 1-2 m in the radial component

if the arc's duration is about 8 minutes. However,the purpose of the above

two references has not been merely to evaluate the misclosure distortions,

but to find under what circumstances these distortions can be accommodated

by slight adjustments to the state vector parameters. In considering

SEASAT observational sigma of 0.1- 0.2m, it has been concluded that the

distortions can be rendered relatively unimportant -- and thus of little

or no consequence for the subsequent P.M. adjustment -- if the arcs' dura-

tion does not exceed seven minutes. This arc length was subsequently

accepted as the criterion for SEASAT data reductions.

The first adjustment ultimately producing the altimeter
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residuals as well as corrections to the weighted parameters (S.H. potential

coefficients and six state vector components per short-arc) has yielded,

as a by-product of an initial stage, the misclosures in the observation

equations. These misclosures reflect on the errors in altimeter measure-

ments (the "noise" of the system), in the a-priori state vector parameters,

and in the S.H. potential coefficients and the reference field parameters.

But, most of all, they reflect on the geoidal detail ignored by the adjust-

ment. Such detail depends on the truncation of the S.H. model and can be

represented by a variance, called here the "theoretical variance", obtained

as a sum of degree variances for geoid undulations where the summation ex-

tends over all the neglected degrees. Thus, in the model truncated at

degree and order (14,14) the summation extends over the degrees 15 through

perhaps 1000 (beyond this degree the contribution is negligible for all

practical purposes). The degree variances are in turn computed from the

covariance function.

Upon computing a root mean square (RMS) of the misclosures in

the (14,14) model, it has been observed (see Appendix 1) that this value

is appreciably lower than the "theoretical sigma", i.e., the square root

of the theoretical variance. Yet, this RMS contains contributions from

the other sources, i.e., from the ephemeris, the S.H. potential coeffici-

ents together with the reference field parameters, and SEASAT altimetry.

The low RMS value serves as an indicator of excellent quality inherent in

each of the three sources above and, in addition, as an indicator of suf-

ficient accuracy in the short-arc algorithm applied in conjunction with

the seven-minute arc criterion. This is supported by the fact that the

mean value of the misclosures is nearly zero (-0.1m). The RMS value
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actually suggests that the theoretical formula for the covariance function

may be too conservative, at least insofar as the geoid undulations for

relatively low degree and order truncations are concerned.

Minimum arc-length criterion. Parallel with the analysis just

described, an effort has been undertaken to eliminate the arcs which would

be too short for a meaningful adjustment of SEASAT altimetry. An arc which

would be essentially isolated (too short to intersect with other arcs)

could lead to the situation where an important geoidal detail would be ab-

sorbed, partly or entirely, by the corrections to the state vector para-

meters. Arcs' intersections with other arcs at crossover points ensure a

cantelever effect preventing any individual set of state vector parameters

from masking the geoidal detail. The degree of this prevention depends on

the number of intersections and thus on the arc's length, in the sense the

longer, the better. However, the arcs of merely 30 in angular length will

already be satisfactory as is explained next.

In order to prevent a short arc from absorbing, over its length,

a constant raise in the geoid, at least one intersection is needed. How-

ever, the arc can still absorb a geoidal tilt around the axis through the

crossover point perpendicular to the orbital plane, as well as a curvature

change. One additional intersection will then prevent the tilt change

from taking place and another one will do the same for the curvature change.

It thus follows that the arc's length should allow for at least three

intersections with other arcs. In this way the residuals entering the more

detailed, P.M. adjustment will not exhibit unrealistically small magnitudes

caused by the arcs' absorption of one or more of the above effects. If

the arcs are at least 30 in length, there should be in general at least
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three intersections, except perhaps in some isolated cases where a satel-

lite pass had been previously eliminated at the pre-processing and screen-

ing stages. The elimination of arcs under 30 in angular length or, equi-

valently, under 50.4 seconds in duration will not deplete the amount of

usable data since such arcs have been found to amount to no more than 10-

20% of all arcs and, more importantly, to contain merely 1-2% of observa-

tions. By comparison, about one-half of all arcs are 250 in angular length

stemming from the seven-minute criterion.

Observational density on an arc. Another problem addressed in

this study is related to the density of SEASAT observations along one di-

mension (i.e., along the pass) in contrast to the density of the ground

tracks intersecting essentially in a 10x 10 grid formed by ascending and

descending passes. Adopting only the crossover observations (generated

by an interpolation) would be detrimental to the state-vector adjustment

in that only a few degrees of freedom would remain, that the arcs under

70 or 80 in angular length would have to be eliminated, a detailed plotting

of a point-to-point geoid along the passes would be inhibited, etc. On the

other hand, the other extreme of utilizing all the altimeter measurements

would be economically prohibitive from the computer run-time standpoint.

Furthermore, little would be gained from a configuration where the density

of observations along one dimension is over 30 times as high as the

density along the other dimension. A conclusion has been reached in the

form of a compromise by accepting every 8th point on each arc for the ad-

justment (other options are also available). In this way, the separation

between measurements along tracks is 14- while the separation across tracks

is 10. This also allows for a reasonable amount of redundancy in case

one attempted to construct a 21 x20 , or even 10 x10, geoid.
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Construction of an "observed" geoid along satellite passes.

An "observed" geoid, which may serve in various geophysical, geodetic and

oceanographic analyses, has been designed to be plotted along each satel-

lite arc in much the same way as the global geoid from the first (S.H.)

adjustment. The quotes are used in order to distinguish this geoid from

the more directly observed geoid as it would appear before any kind of

adjustment. The latter geoid is given essentially as the initial radial

distance (from the geocenter) to the satellite minus the radial distance

to the ellipsoid minus the altimeter measurement; a small correction due

to the earth's center, the altimeter foot-point, and the satellite not

being in a straight line has been discussed in [Blaha, 1977]. The observed

geoid, although known as a by-product of the current misclosure computation,

is not envisioned to be used for plotting. Instead, the "observed" geoid

is recommnended for this purpose; it differs from the observed geoid only

in that the adjusted rather than the initial radial distance to the satel-

lite is adopted in its computation. It still contains the same high-

frequency information, but is improved overall through the corrections to

the state vector parameters as determined in the global adjustment. Ac-

cordingly, errors in this geoid stemmring from the errors in the ephemeris

are expected to be reduced or eliminated. The short-arc adjustment al-

gorithm thus proves useful in producing a detailed and reliable geoidal

profiles along the satellite passes, consistent with the high quality of

SEASAT altimeter observations.

Reduction in run-time requirements. In considering that the

computer time consumed by the computations carried out by the orbital

integrator accounts for a major portion of the total computer time used
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in the global adjustment of satellite altimetry, the possibility has been

sought to reduce the run-time requirements without compromising the high

quality of SEASAT altimetry. The main function of the orbital integrator

is to compute the satellite positions at given instants which correspond

to SEASAT events (altimeter observations). Needed for this task are the

s.v. parameters associated normally with the mid-arc epoch and the S.H.

potential coefficients entering the integrator in the role of constants

used in the computation of all the other points on the arc. Previously

these constants consisted of the same S.H. potential coefficients which

entered into the adjustment of the global geoid (weighted terrestrial para-

meters). The set of these coefficients has been typically truncated at the

degree and order (14,14).

However, it has been considered that for the orbital integrator

this set could be further truncated without introducing inadmissible errors.

The main feature of the short-arc algorithm which makes such economies

feasible is the property of the arcs being "short", in the sense that the

longest arc in a SEASAT adjustment has been stipulated not to exceed 7

minutes in duration. If the epoch is at mid-arc, the longest time interval

which the integrator would have to span is then 3.5 minutes. This interval

is sufficiently short to allow for a reduction in the number of coeffici-

ents used by the integrator, while at the same time maintaining the alti-

meter errors thus introduced at levels substantially smaller than SEASAT

altimeter noise. The problem at hand is thus the following: How much can

the coefficient set be truncated for the use in the orbital integrator

without compromising the excellent quality of SEASAT altimeter measure-

ments?
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This problem has been addressed by forming the observation

equations at two levels; the first level represents the standard approach

in which the "full" set, here the (14,14) set, is used in both the geoid

computation and the orbital integrator, and the second level represents

the new approach with a "reduced" set entering the orbital integrator,

everything else being the same (SEASAT observations, s.v. parameters,

S.I-. parameters used in the geoid computation, etc.). The tests conducted

during this research have begun with a (10,10) reduced set using randomly

selected SEASAT passes filed on various AFGL magnetic tapes and considered

to be fairly representative of the world's oceans and of the gravity field

affecting the satellite. A detailed description follows.

The most extensive of these tests, in which all of the mis-

closures and their statistics have been printed, involves 38 SEASAT arcs

registered on the tape no. CS1700. Almost two-thirds of the arcs approach

the maximum allowable length of 6 or 7 minutes in duration while the rest

of the arcs are shorter, quite typically about one-half of this length

(about 3 minutes in duration). The epoch is considered to be at the mid-

arc, especially where the longest arcs are concerned. The difference

between the two parallel sets of observation equations are alternately

called "errors" because they have the nature of errors in the radial di-

rection, provided the results obtained with the full set are taken as an

errorless standard. Such errors will clearly affect the quality of SEA-

SAT altimetry and will have to be carefully scrutinized. The sum of these

errors tends toward zero as the number of arcs increases. As will be

explained later, these errors have random characteristics on the whole

(although not on an individual arc) and will be regarded as having a
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Gaussian (normal) distribution with the zero mean and a certain variance.

Their sigma (the square root of the variance) will be compared with the

sigma of the SEASAT altimeter noise in order to determine the acceptability

of a given reduced set of coefficients.

In about 85% of the arcs the differences in misclosures (i.e.,

the errors) are of the same sign; they start with zero values at the epoch

and at some distance away from it, and increase geometrically toward the

extremities, giving rise to a curve resembling a parabola. The average

error for the arc is, except perhaps for the sign, also the average abso-

lute error. The latter does not have to be computed from the printed mis-

closures for the arc but is known immediately as the difference between

the two printed average values for the misclosures (the average misclosure

in the reduced set minus the average misclosure in the full set for the

same arc). In the remaining 15% of the arcs the situation is complicated

by the fact that the errors change sign (once); they are of one sign and

of small magnitude at one extremity, reach the zero value at a relatively

small distance from it and end up with the opposite sign and a much larger

magnitude at the other extremity of the arc. Thus the difference between

the average misclosures is somewhat smaller than the above average absolute

error. However, this error can be computed individually in several in-

stances and the results can be then used to deduce an approximate factor

which will carry out the conversion from the ideal case where the mis-

closures on all arcs are considered without the sign change to the

realistic case where the sign changes in 15% of the arcs. For the 38

arcs examined, this factor, to be applied in the final result computed

"blindly" from the average misclosures, was found to be 1.07. This
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procedure makes it possible to examine dozens of arcs in a matter of

hours instead of days, considering that many thousands of individual

misciosures may be involved.

When studying the 38 selected arcs it became apparent that the

closeness of the epoch to the mid-arc is very important. For a six-

minute arc whose epoch is, for example, 4.5 min. from one extremity and

only 1.5 min. from the other, it may happen that the extremity farther

from the epoch exhibits exceedingly large errors, perhaps over 40 cm,

while the errors toward the other extremity may be close to zero. On the

other hand, if the epoch is at mid-arc the errors at both extremities of

the same pass may be contained within 10 cm; it has been observed that

significant deterioration in conjunction with the (10,10) reduced set

starts taking place at points about 3.5 to 4 minutes from the epoch.

The reduced set resulted in the errors which in about 1/3 of

the cases reached over 20 cm at the extremities; in a few isolated cases

these errors surpassed 30 cm. The overall average absolute error was

found to be 4.4 cm. It was computed using the procedure described earlier,

in which the results from 85% of the arcs are used directly and the re-

maining 15% of the arcs with changing signs of the errors are treated in

detail in order to produce comparable results. About 73% of the errors

were found to be contained within 5.5 cm (the misciosures in the two

parallel computer runs are rounded to the nearest cm, and this outcome

was reached by counting the incidence of errors having the magnitude of

6 cm or more according to the computer printouts). The errors have a

random character insofar as the geoidal determination is concerned; the

ascending and descending arcs intersect at numerous locations and where
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one arc has a "plus" error another may have a "minus" error or no error

at all if the intersection takes place near the epoch. Although some of

the relatively long arcs may exhibit larger errors than the shorter arcs,

they also intersect at a larger number of locations which tends to even

things out in the geoldal adjustment.

For the sake of interest, the altimeter observations on the 38

arcs were subjected to a least-squares adjustment, together with the GEM

10 (weighted) S.H. potential coefficients and the s.v. parameters. Al-

though the input sigma in the radial component of the s.v. parameters was

1.6 m, the average absolute differences in the corresponding corrections

was merely 3 cm. Similarly, the corrections to the three velocity com-

ponents differed by a small fraction of the input sigmas (these were on

the order of 5 cm per second). Although the radial velocity component was

weighted somewhat more loosely than the two horizontal velocity components,

the corrections it exhibited were often the smallest of the three. In

these comparisons, the geoid (computed with the 14,14 S.H. model) showed

differences ranging between 1 and 3 cm, under 1.5 cm on the average. When

the residuals were examined, the largest differences between the two ad-

justments were found to be typically about 3 cm; in a few cases (about 15%)

they were in the vicinity of 10 cm. Since the number of passes was too low

to allow for arcs' intersections, one may expect that in a global adjust-

ment more of the errors would be accommnodated by the changes in the s.v.

velocity components and thus by the changes in the arc's curvature. The

differences in the S.H. geoid and in the residuals would then be even

smaller than those just mentioned. This means that the final geoid, ob-

tained from the S.H. adjustment and from the residuals produced by this
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adjustment and subjected to a separate modeling, would contain errors

(attributable to the 10,10 reduced set used by the orbital integrator)
which would reach a few cm at the most and would often be close to zero.

As stated earlier, the errors due to a reduced set are con-

sidered random and are evaluated against the background of the altimeter

noise. The degradation of the SEASAT altimetry can be assessed from the

"combined" sigma,

~combined "Iatimetry + a~dcd e~

Although the sigma of altimeter noise is given between 10 and 20 cm, the

evaluation will proceed under a stricter condition of 10 cm to be used in

conjunction with the "combined" sigma. On the other hand, assuming the

Gaussian distribution associated with the above errors one can estimate

its sigma as the average absolute error (here 4.4 cm) divided by 0.80,

namely

a reduced set 5.5 cm,

which turns out to be the magnitude within which 73% of the errors were

found by a simple count. In theory, the percentage of such errors with-

in ±a would be 68% which agrees quite well with the present count using

an approximate method and a relatively small sample. In other words,

the assumption of Gaussian distribution is reasonably well supported also

from this point of view. Upon utilizing the two sigmas just presented,

it follows that

Gcomblned 11.4 cm = 1.14 a altimetry
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This result has been obtained when considering a 3.5 minute time interval

from the epoch to an extremity of an arc. In particular, the epoch for

the arcs of maximum allowable length (up to 7 minutes in duration) has

been considered to be at mid-arc.

According to the above, the sigma of SEASAT observational noise

has been degraded by 14% (if caltimetry = 15 cm were taken, this number

would be only 6.5%). Such a degradation is not serious and is certainly

more than offset by significant computer savings which can be materialized

by using only 121 out of 225 coefficients in the orbital integrator. These

coefficients serve in the computation of satellite positions on each arc

which is the most time-consuming procedure in a global adjustment of satel-

lite altimetry. That similar savings are significant becomes clear if one

bears in mind that a global adjustment of SEASAT altimetry involves some

10,000 arcs.

For comparison purposes, 33 passes have been selected at random

from another AGFL tape (tape no. CS700). The altimeter observations were

not adjusted, only the statistics for the misclosures (average, rms, average

absolute value) were printed for each arc. In agreement with an earlier

statement, the average absolute value for the errors was first computed

"blindly", by comparing the average misclosures obtained with the full and

(10,10) reduced sets, and the result was then multiplied by a factor 1.07.

The average absolute error thus obtained is somewhat lower than 4.4 cm

found earlier, but the earlier result is considered more reliable.

Using the same method and the same 33 passes, a reduced set

(8,8) was examined. The average absolute error for these 33 arcs shows an

increase by a factor 1.81 when compared with the above (10,10) case. This
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would ultimately imply a 40% degradation (as opposed o a 14% degradation).

This approach could still be acceptable in most practical cases, but should

be viewed with caution and special attention should be paid to having the

epoch always almost exactly at mid-arc.

Finally, the same test was carried out using a (6,6) reduced

set. This time the increase in the average absolute error resulted in afactor

2.93 and the corresponding degradation amounted to almost 90% (the sigma

due to the reduced set was over 50% larger than the sigma for the alti-

meter noise used above).

These experiments have indicated that a (6,6) reduced set should

not be used. Perhaps the best outcome, allowing for significant economies,

can be achieved with a (10,10) reduced set. If computer savings are of

paramount importance, an (8,8) reduced set could also be used.

Unsuitability of reducing the number of state vector parameters.

An analysis performed in order to see whether substantial computer savings

could be realized by adjusting four rather than six s.v. parameters per arc

in a short-arc mode of satellite altimetry is described in detail in

Appendix 2. It has been considered that if a satellite orbit is circular

or nearly so, if the epoch is at mid-arc and if the arcs are sufficiently

short, the directions of altimeter measurements coincide approximately

with the "o" direction of the state vector orthogonal triad ("i" indicates

in-track, "c" crosstrack, and "lo" is orthogonal to the other two, com-

pleting a right-handed triad). In that case, adjusting the state vector's

position components in "i, and "c" directions would have little bearing

on the geoldal adjustment since the altimeter measurements would be
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almost completely insensitive to differential changes along these two di-

rections. For this reason, also the a-posteriori sigmas in these direc-

tions would be hardly improved at all compared to the a-priori values

(this has been confirmed during computer simulations). Accordingly, the

two position components corresponding to these two directions could be

held fixed without introducing any undue strain in the adjustment or

significantly altering the geoidal parameters. The advantage of such an

approach consists in that these two parameters could be effectively eli-

minated from the adjustment so that only four state vector parameters --

instead of the original six parameters -- would be adjusted for each arc.

The above possibility seemed attractive especially when con-

sidering the thousands of short arcs of satellite altimetry that have be-

come available in recent years. During the adjustment process an inver-

sion of a 6x6 matrix (N. + P.) has been made in conjunction with each arc

(see e.g. the formulas in Chapter 2 of [Blaha, 1975]), corresponding to

the presence of six state vector parameters per arc. The number of alge-

braic operations (namely, scalar multiplications which consume by far the

most computer time) needed in inverting this matrix is (proportionate to)

6 3=216, while the corresponding number of operations in inverting a 44

matrix would be only 4 =64. Thus, if nothing except one inversion should

be performed for each arc, only about 30% of computer time would be

needed and impressive savings of 70% would be realized. Savings in terms

of computer storage need not be considered since in the short arc algorithm,

the space used by the first arc is reused by every consecutive arc.

The cause for concern in pursuing this avenue has been the fact

that if the orbit is not quite circular, the directions of individual

-19-



measurements along a short arc may depart significant-y from the direc-

tion "o" of the state vector triad even for very short arcs. The larger

the orbit's eccentricity, the greater this departure and the ensuing

deformation in the adjustment results. This indicates that the above

suggested procedure is a trade-off between the computer efficiency and

the rigor of the solution. It is also clear that final computer savings

are only a fraction of those estimated by merely adding the total number

of scalar multiplications in matrix manipulations; a substantial part of

computer run-time is absorbed by the formation of partial derivatives and

constant terms in observation equations, not to mention the input-output

and other computer operations. It has thus become apparent that the sug-

gested procedure could be useful only if the satellite orbit were nearly

circular and if the computer savings as obtained by adding the above

scalar multiplications amounted to at least 20% or 30%.

However, during an analysis of the adjustment process it has

transpired that the inversions of the earlier mentioned 6x6 matrices as-

sociated with the six adjustable state vector parameters account for only

a miniscule part of the total number of operations performed in a realistic

adjustment. Although certain matrices in the suggested procedure would

have one dimension reduced from 6 to 4 (this would lead to computer savings

in several matrix multiplications), the overall savings would not be im-

pressive. In particular, if only 100 measurements were recorded along

each arc and the total number of arcs were 100, the savings attributed to

matrix manipulations would amount to about 6.2%; if the number of arcs

increased to 1000 or more, these savings would converge to about 6.4%.

If 1000 measurements were recorded (and utilized) along each arc and 100
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or more arcs participated in the adjustment, the savings would amount to

about 2.2%. Thus even in the best practical case the total computer

savings (including the formation of partial derivatives, etc.) could hard-

ly reach 1% and most often would be only a fraction of this number. It is

concluded that the efficiency of the existing adjustment algorithm cannot

be noticeably improved by this or a similar procedure; moreover, such a

procedure could impair the rigor of the solution. The existing algorithm

has thus proved to be advantageous and should be retained.

Option to lower the state vector sigmas. Initially, the objec-

tive of the first, global adjustment has been to simultaneously solve for

the s.v. parameters and a (truncated) set of the S.H. parameters. The ob-

jective of the second, regional adjustment built on the residuals from the

first adjustment has been to solve for the point-mass (P.M.) parameters

and, at a later stage, for the parameters associated with the chosen long-

period, diurnal and semidiurnal tides. If one chooses to pursue this ap-

proach and to eliminate tidal considerations from the first adjustment in

any form (i.e., the tidal effects are not subject to adjustment nor ac-

counted for by suitable corrections), one is faced with the problem of

the s.v. adjustment accommnodating some, or most, of the tidal effects.

This follows from the realization that the tidal signal can resemble a sys-

tematic orbital error over local regions in that the wavelengths can be

comparable. The tidal effects vary, both in sign and magnitude, from one

area to the next and from one time epoch to another. In the present con-

text of SEASAT arcs limited to 7 minutes in duration (or 250 in arc), a

tidal effect could manifest itself essentially as a constant rise, or fall,

over an arc's length. If the radial components of the state vectors were
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nearly perfect and were accordingly held fixed or heav'ily weighted in

the first adjustment, the time variations in the sea surface would indeed

be reflected in the residuals. The desired tidal constituents could then

be modeled and solved for in the second adjustment.

In reality, however, the weight associated with the radial com-

ponent is usually too weak to ensure such an outcome. The sigma in the

radial component given for the SEASAT ephemeris is 1.6m and roughly com-

pares with the tidal rangein open ocean. Thus, if not modeled, a sub-

stantial part of the tidal effect could be absorbed by the satellite arc.

This problem may be circumvented by an artificial decrease of the state

vector's positional sigmas. Although only the radial component is of im-

portance here, a change in the other two positional sigmas (associated qith

the in-track and crosstrack components) has practically no bearing on the

residuals, and it results in a more advantageous algorithm. The procedure

to artificially lower the input sigmas of the s.v. parameters during a

latter stage of an adjustment is described in detail in Appendix 3.

It has been realized that in this way, the s.v. parameters

would lose at least some of their ability to compensate for the actual

orbital errors present in the ephemeris. Such an artificiality could be

deemed acceptable only by virtue of the good quality of the precise ephe-

meris as confirmed through data reductions of SEASAT altimetry. Since the

positional corrections to the state vectors are reduced or even suppressed,

it is important that the original values be unbiased. In this way the

errors propagating from the arcs into the residuals behave in a random

fashion from arc to arc.
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With regard to the variance-covariance propagation, the artifi-

cial reduction of the positional sigmas is clearly unjustified. There-

fore, one could consider increasing the weights only in the process of

computing the corrected s.v. parameters themselves and subsequently com-

puting the residuals; the variance-covariance estimates for the state

vectors should be presented in terms of the original, more realistic values.

The change in weights should not affect any of the X parameters (correc-

tions to the S.H. potential coefficients), their variance-covariance matrix,

etc., either, because these values represent an outcome of a least-squares

process in which realistic weighting has been -pplied for all the para-

meters. Accordingly, this change should take place only in the final stage

of the first adjustment, when the solution for Xi (corrections to the six

s.v. parameters on the i-th arc) is "unfolded" from the overall adjustment

of X.

An important outcome of these considerations is that the re-

siduals from the first adjustment carried out with artificially lowered

sigmas of s.v. parameters would contain, in addition to the essentially

unmodeled orbital errors (assumed random from arc to arc), also the unal-

tered tidal effects and the geoidal features. The second adjustment

would then proceed to model the tidal effects by appropriate tidal para-

meters, and the geoidal detail by the P.M. parameters. The various effects

of random character including the altimeter noise, unmodeled geoidal detail

and the above unmodeled orbital errors, as well as unmodeled sea-surface

effects, would manifest themselves in second-generation residuals.

However, a subsequent development has indicated that the need
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for the above approach will be greatly diminished if a tidal adjustment

is implemented in both phases (global and regional) of satellite altimetry

reductions. Such a procedure is envisioned as a part of the on-going

effort, and it will be described in the following chapter and in the next

report. In this way, the artificial lowering of the input sigmas can be

either completely bypassed, or can be implemented on a much smaller scale

than anticipated.
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3. TIDAL AND OTHER SEA SURFACE EFFECTS

In following, in principle, the system of classification and

description of various sea surface effects by Lisitzin [1974], one can

divide these effects into the categories and sub-categories listed below:

1) Astronomical contributions:

la) Long-period tides,

1b) Diurnal and semidiurnal tides,

1c) Chandler effect,

Id) Variations of the speed of the
earth's rotation;

2) Meteorological contributions:

2a) Atmospheric pressure effects,

2b) Wind effects,

2c) Evaporation and precipitation;

3) Oceanographic contributions:

3a) Water density effects,

3b) Currents;

4) Vertical movement of the earth's crust;

5) Melting or forming of continental ice, etc.;

6) Coastal and other local phenomena;

7) Other phenomena.
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This study is concerned mostly with the long-period tides and

the diurnal and semidiurnal tides of the "astronomical contributions",

,.e., with the items la)and 1b). However, the Chandler effect, the

atmospheric pressure effects, and the water density effects, i.e., the

items Ic), 2a), and 3a), could also be considered for a possible inclu-

sion into the SEASAT altimetry adjustment algorithm, most likely in the

form of a correction to the altimeter measurements. This approach will

be discussed in Section 3.5. On the other hand, the remaining effects,

i.e., id), 2b), 2c), 3b), 4), 5), 6) and 7), will be deleted from further

analysis. They are briefly described in Appendix 4 with an explanation

of why an inclusion of these effects in the present altimetry adjustment

model would not serve a useful purpose. For the most part, then, the

present chapter will be dealing with the long-period, diurnal, and semi-

diurnal tidal effects; an important part of the analysis will be based

on considerations related to the theoretical (equilibrium) tidal model.
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3.1 Equilibrium Tide

The first task in this section will be the determination of

the tidal effects to be described in the current presentation, and of

those which will be described in the next report. The criterion for this

organization will be the relative magnitude in the sea level changes due

to individual tidal constituents as determined by the equilibrium theory.

This theory involves the hypothesis of a completely rigid earth covered

over its entire surface (in the absence of continents) by deep water, of

no friction in the water envelope as well as of no meteorological or

other disturbances.

When determining the height of the theoretical, or equilibrium,

tide, its individual component "hi is associated with the tidal con-

stituent "j" of amplitude A. and argument aj. The total height is then

the sum of the individual h.'s. The basic formulas adopted in this de-

velopment are (129)- (131) of [USCGS,1958] abbreviated here as [US].

Since only the average values of the h.'s with regard to the longitude

of the moon's mode are sought at the first stage of the analysis, the

"node factor", f, is taken as unity in the pertinent formulas. This im-

plies, for example, that the "permanent tide" symbolized by Ao is con-

sidered through its mean effect over one full revolution (or several full

revolutions) of the moon's node; such a revolution is completed in about

18.6 years. The value hA0 in this context will later be related to the

development in Section 5.2 of [Blaha, 1980).
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In considering the average (in the above sense) combined

effect of the moon and the sun, the constituent height can be expressed

by

h. : Aj cos Xj (1)

The amplitude varies with , the geocentric latitude, as

A. K. G.(@) C. ; (2)

here f =1 is assumed so that the coefficient C. represents the mean value

of a pertinent function with respect to the longitude of the moon's node.

In the following, three indices (a, b, c) will be used:

a ... long-period constituents,

b ... diurnal constituents,

c ... semidiurnal constituents.

The meaning of the symbols Kj and Gj( ) is thus narrowed down to

K = aa = 0.13335m , (3a)a

Kb = Kc  Ga=0.2667 m, (3b)

where

G = (3/4)(M/E)(a/r') , (3c)

with M and E being the moon's and the earth's masses, respectively, a

being the mean radius of the earth (6,371 km) and rM being the mean earth-

moon distance; according to the values listed in Table 1 of [us],

G :0.41865 x 10- . Further,
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G a~ (1 -3 sinlo) ,(4a)

Gb) sin 2 (4b)

M~ ()=COSIO (40)

In anticipation of the results (i.e., of the constituents to

be described in this and the next reports), Table 1 has been constructed

featuring the constituent heights expressed according to (1)-(4). Its

"extreme magnitude" column features the largest values of h.i which can be

reached as follows:

a..0= ±900,

b ... = ±450,

c ...$ 0.

In each group (a,b, or c) the constituents are listed in the descending

order of magnitude.

In organizing the treatment of the tidal constituents, the de-

cision has been reached to include herein those whose extreme equilibrium

magnitude can be as low as 5 cm. If the equilibrium model were realistic,

this would indicate the possibility of having a reliable one-decimeter

geoidal resolution. In agreement with Table 1, the tidal constituents in

this category are: A 0; Kit 01; MV S2 . The next report will include the

constituents whose extreme equilibrium magnitude ranges from 5 cm down to

2.5 cm, which indicates the possibility of a half-decimeter geoidal resolu-

tion under the same circumstances. Following the P 1 constituent in the

order of importance in the b (diurnal) group would be the QIconstituent
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with CQ1 .0730 and the extreme magnitude of 0.019m. Similarly, following
the K2 constituent in the c (semidiurnal) group would be the L2 constituent

with CL2 = .0251 and the extreme magnitude of 0.007m. These and all the

other constituents with even smaller magnitudes are left out of considera-

tion. An exception to this statement are the Mm and SSa constituents in

the a (long-period) group whose extreme magnitudes in Table 1 are slightly

below 2.5 cm. These borderline cases are present because of a very short

active life-span of SEASAT (about three months) during which the SSa con-

stituent could result in quasi-systematic influences for most of the alti-

meter data. The next report will then describe the tidal adjustment en-

larged by the constituents: Mf, Mm, SSa; P1 ; N2 9 K2. Accordingly, a

total of eleven constituents will actively participate in the adjustment

of SEASAT altimeter data. They are listed in Table 1 in the order: Ao ,

Mf, Mm, SSa; KI, 0I, PI; M2, S2, N2, K2.

Even if the water friction as well as meteorological and other

disturbances were nonexistent, the equilibrium tidal formulas would be

rendered more complex due to the yielding of the earth's crust as a

function of its elastic properties. Since the earth's crust is not rigid

as originally assumed, it will be deformed during the tidal process. This

phenomenon is sometimes called the earth's deformation or the bottom tide,

and is given as a multiple of the equilibrium tide. The earth's tidal

deformation involves a shifting of mass and changes in the potential,

thus causing an additional tidal effect. In agreement with [Bomford, 1975],

page 557, these two phenomena will be called here "earth's deformation" and

"additional tide". In reality, the situation is complicated by further

effects which, however, are relatively small and can be left out of con-

sideration for the present needs.
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If the height of the equilibrium tide is denoted AB, in agree-

ment with [Bomford, 1975] one has

earth's deformation = h AB , (5a)

additional tide = k AB , (5b)

where h and k are the Love numbers. As explained in (Van{6ek, 19801,

geodetic applications have resulted in using the Love numbers h2, k2 and

in denoting them h, k, respectively. In agreement with this reference

the following values are adopted:

h = 0.62 , (6a)

k = 0.29 . (6b)

In considering satellite altimetry, the tidal effect which can

be sensed by the altimeter is a change in the radial distance from the

geocenter. If the original equilibrium model is considered in conjunction

with the deformable earth (i.e., if the assumption of a completely rigid

earth is removed), this effect is given by the equilibrium tide plus the

additional tide of (5b), namely

"geocentric tide" = (1+k) AB = 1.29 AB . (7)

On the other hand, the tide which under these circumstances would be

measured by a tide gauge (giving the height of the ocean surface above

the deformable ocean bottom) would have the bottom deformation (5a) sub-

tracted from (7), giving

"measured tide" = (1+k-h)AB = 0.67 AB . (8)
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C h.EXTREME
MID h.M~n P O MAGNITUDE

Ao constant .7384 .0985m (1-3 sin 2 ) .197m

Mf semimonthly .1566 .0209m (1-3 sin 2o)cosaxMf .042m
a

Mm monthly .0827 .0110m (1-3 sin 2 )COSCMin .022m

SSa semiannual .0728 .0097m (1-3 sin 2p)coscaSSa .019m

K declinational .5305 .1415m sin24 coscLK, .141m

1 luni-solar

b 0 1 principal lunar .3771 .1006m sin24 cosca0  .101m

P 1  principal solar .1755 .0468m sin2dt cosup1  .047mr

M2 principal lunar .9085 .2423m cos2  cosctM2  .242m

c S2  principal solar .4227 .1127m cos24 cosc 52  .113m

N 2  ecliptical lunar .1759 .0469m cos 2  cosctN2  .047m

K 2 declinational .1151 .0307m cos'p coSctK2  .031m
2 luni-solar

Table 1

Approximate heights of selected tidal constituents,
including extreme magnitudes

In combining (7) and (8), one can also write

"geocentric tide" =[(1+k)f(1+k-h)] x "measured tide" , (9a)

where
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According to [Lisitzin, 1974]. page 50, the magnitude of observed

long-period tides is, on the average, approximately a 3.7-multiple of the

equilibrium value. If h denotes the long-period "geocentric" tidal eleva-

tions with the empirical factor (e) taken into account,

e =3.7 ,(10)

then a better approximation of the actual situation than that depicted in

Table 1 is

h = (1+k) e h. 4.8 h. (11)
3 3

A somewhat similar outcome -- although more complicated -- could be expected

in the case of diurnal and semidiurnal tidal constituents. Instead of

merely comparing the amplitudes and phases of the actual and theoretical

effects, a solution of dynamic equations would be needed for a realistic

representation of tidal phenomena. Be that as it may, the main outcome of

this discussion points toward a lower geoidal resolution than was antici-

pated when only the equilibrium tide (with rigid earth) was considered.

Even if the empirical factor is not as large as indicated in

(10), the previously considered resolution capabilities would still be

lowered, probably two- or three-fold. Therefo~re, the practical resolution

capabilities are not expected to be at the 5 cm theoretical level as dis-

cussed earlier in conjunction with all eleven of the constituents of

Table 1 but, rather, at a 10 cm or 20 cm level. However, this still repre-

sents a great improvement in geoidal representation when compared with

past altimeter data reductions into which the tidal effects were not in-

corporated at all. For example, the most important of the tidal
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constituents, M2 , can alone account for over one-mete,' in elevation ef-

fects, when considering its extreme magnitude of Table 1 in conjunction

with a factor of the kind (l+k)e adopted in analogy to (11). One can thus

conclude that in spite of the actual resolution being coarser than that

corresponding to the equilibrium tide (with rigid earth), a meaningful

geoidal resolution will nevertheless be improved by an order of magnitude.

After all eleven of the constituents of Table 1 have been included in the

SEASAT altimetry adjustment model, such a resolution is expected to im-

prove from a 1.5-2m level to about a 20 cm level.

Permanent tide. An approximate equilibrium formula giving the

average tide-raising effect, N, was derived in [Blaha, 19801 and is re-

capitulated in Appendix 5, equation (A5.1), as

N = 0.148m (cos2q - 1/3).

This formula is refined in (A5.26) to read

N = 0.147m(cos2 - 1/3). (12a)

Because of the identity

cos2p - 1/3 = (2/3)(1-3 sin 2q)

the formula can be rewritten as

N = 0.098 (1-3 sin 24) . (12b)

This last result compares well with .0985m (1-3 sin 2p) of Table 1. It

also agrees with [Lisitzin, 1974], page 49, where it is implied for the

"permanent" tidal potential:
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WA = .96621 (1-3 sin 2€) m2/sec 2
WA0

thus

WAo/T = .0986m(1-3 sin 2
0)

where i, the average terrestrial gravity, is adopted as 9.80 m/sec2.

The basic initial formulas in Appendix 5 will now be related to

the development in [Godin, 1972]. The potential induced by the moon is

expressed on pages 19, 20 of this reference as

tM  V = (kMa2/rI) P2 (cos z)

where k is the gravitational constant, P2 (cos z) represents the Legendre

polynomial of order two in cos z, and z is the zenith distance to the

moon, the other symbols having been already defined. Since

P2(cos Z) = 21 (3 cos2z- 1) = (3/4)(cos2z +1/3)

one can write

VM =(3/4)(kMa2/rl)(cos2z + 1/3) . (13)

Since NM, the tidal elevation due to the moon, is computed as

NM = VM/

where i, the average terrestrial gravity, is

kE/a2
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it follows that

NM k1(cos2z + 1/3)

k= Ga ,

with G given in (3c). According to the [US] values, k 1  0.2667m as was

already indicated in (3b). The same reference implies that in order to

obtain the formula giving N5 for the sun's effect, kI should be replaced by

k2 = 0.4602 k = 0.1227 m. This development for NM and NS agrees with

(A5.2) together with (A5.3a,b) of Appendix 5.

If a more accurate representation of the permanent tide is

sought, the influence of the moon and the sun must be treated separately.

For this purpose, the node factor for the moon, denoted in general as fj,

can no longer be assumed to be unity (it is always unity for the sun).

When applied separately for the moon and the sun, (2) becomes

Aj = K. Gj(4) C. f. ... moon , (14a)

A = K. Gj( M C'. ... sun (14b)

The node factor (a function of the longitude of the moon's node with the

periodicity of about 18.6 years) changes very slowly from year toyear for

each constituent. Table 14 of [US] gives the value of the pertinent f.

for the middle of each year between 1850 and 1999. For the permanent

tide, the value which corresponds to the active life-span of SEASAT can

be associated with mid-year 1978 and is given as

fA = fm = 1.131 (15)

0
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If a given constituent represents the moon's action alone, (1)

is adopted without change in notations and A. is computed according to

(14a). For a strictly solar constituent, A and cj in (1) are replaced

by A! and a, with At computed as in (14b). If a constituent is composed

of both effects, the resulting h. is obtained as

h. = A. cosaj + At cosat = K.G.( )(C f. cosaj + Ci cost). (16)

Since aj and at are immaterial for the permanent tide, with the aid of
3

(3a) and (4a) equation (16) becomes

hA = 0.13335m(1-3 sin 2 )A(CofAo + CA) . (17)

Table 2 of [us] gives

CAo = 0.5044, CAo = 0.2340

which, when added algebraically, yield the value 0.7384 seen in Table I

for an average effect. However, in considering the specific case of

SEASAT altimetry and the corresponding value fA in (15), equation (17)
0

yields the explicit form for the equilibrium height of the constituent

Ao:

hA = 0.1073m(1-3 sin 2€) (18)
A0

Diurnal constituents K1 and 01. The value of hK1 is made up

of the moon's and the sun's contribution, hence it is of the form (16).

Due to the changing longitude (N) of the moon's node, aK1 differs from

ak1 by a small quantity -v, namely

-37-



UK ' = a - v. (19)

Similar to the node factor, the periodicity of v is approximate-

ly 18.6 years. Over short periods (e.g. less than a year) it can be con-

sidered constant. Table 6 of [US] gives the values of v according to N.

For the beginning of September 1978, the epoch which is quite representa-

tive of the SEASAT data series, the value of N found from Table 4 of [US]

is

N 178 o , (20)

implying that

V 0."57'" (21)

The value in (20) is considered constant for all SEASAT observations.

In order to obtain hK1 from (16) in the form similar to (1) in

conjunction with (14a), one has to simplify the following expression:

rKl= CK1fKI cos(Cx - V) + Ck1 cos&l , (22a)

which corresponds to the quantity inside the parentheses in (16) with K1

substituted for j and with (19) taken into account. Equation (22a) can

be developed into

cK = (CK fK cosv + C'K) cosf + CKf sinv sinal , (22b)
1 1k 1 )cs 1 + 1K 1

which is of the form

C = C1 cosa + C2 sini (C2+C2) [(C1 cosa + C2 sina)/(C2+C)
- - "
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If v' is defined as arc tg (C2/C), one has

sin' = C2/(C(+C ) , cosv' = CO

and hence

c = (c- +c2) cos (a-V 0 )

When applied to (22b) this yields

CK = (CKIfKI) cos&Kl , (23a)

where

CKjfK1  (C 2+C2), (23b)

CI = CKfK cosV + C C2 = CK fK sinv, (23c)

&K- 1 , VO = arc tg (C2/CI). (23d)

The coefficient CKI represents a certain mean value defined as

CK1 = mean [(CI +CP cosv''] mean C1 , (24a)

which in Table 2 of [US] is listed to be

CKI = 0.5305. (24b)

Further listed are the values

CKI =0.3623, Ck, = 0.1681.
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The node factor for K1 is identical to that for J1 of equation (76) of

[US], and it is listed for mid-1978 as

fK1 f1 = 0.827.

With these values for CK , fK and with v from (21), one calculates

(see 23c,d):

CI r 0.4677, C2  0.002981, v' 2 0.370;

from here it follows (see 23b,d) that

CKIfK1 = 0.4677, aK k = 1 -0.37
0  (25)

The values in (25) could also be obtained more directly from

Table 14, and Table 6 or Table 11 of [Us], respectively. In particular,

0.4677 could be found upon multiplying 0.5305 in (24b) by the corresponding

node factorfK1, listed for mid-1978 in Table 14 (under the heading K1) as

0.882; and 0.370 could be found, for N = 178, from Table 6 (under the

heading v') or from Table 11 (under the heading KI). In either case the

equilibrium formula (16), applied to K1 in conjunction with (3b), (4b),

(23a) and (25), becomes

hK1 = 0.1248m sin2o cos(a 0.370) , (26)

referring to the epoch of SEASAT altimeter data acquisition. The variable

part of the argument, a'l, will be described later.

The effect of 01 is due exclusively to the moon, hence (1) and

(14a) apply. In analogy to (19) and the development that followed, ci01

will be written as c (this, in itself, is immaterial here) plus some
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small quantity which will again be considered constant due to the short

active life-span of SEASAT. In particular,

a0I= a; + (2 -v) . (27)

For N given in (20), Table 4 of [US] yields approximately 0.540 for C

and 0.570 for v (see equation 21 above); Table 11 of the same reference

yields directly 2&-v under the heading 01. In either case the result is

2 - v = 0.50'. (28)

The coefficient "C" and the node factor for mid-1978 are

C0  = 0.3771, f0  = 0.806 . (29)

Upon inserting the results (3b), (4b) and (27)-(29) into (1) and (14a),

one has the equilibrium formula for 01 representing the SEASAT observa-

tional epoch:

h01 = 0.0811m sin24 cos(c1I + 0.500) (30)

Semidiurnal constituents M2 and S2 . The most important of all

the tidal constituents, M2, is due exclusively to the moon. It can be

developed in a complete analogy to the approach followed for 01. The

argument is written as

2 2 + (2&-2v) 
(31)

where & and v were already found; thus

2- 2v = -0.07o (32)
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which is also the value given in Table 11 of [US] under the heading M2 .

Further, one has

CM 0.9085 f M 1.038 , (33)

and

hM 0.2515m cos24 cOs (ct2 -0.07o) (34)

which is the equilibrium formula for M2 corresponding to the SEASAT ob-

servational epoch. It has been obtained from (31)-(33) in the same way as

(30) was obtained from (27)-(29) except, of course, that (4b) has been re-

placed by (4c).

The constituent S2 owes its existence to the sun. The argu-

ment is thus written as 't in agreement with the original convention,

and the node factor is omitted. In other respects the equilibrium formula

for S2 is derived similar to (34) above, namely

hS2 = 0.1127m cos 2  cosa2 (35)

In this case, no special considerations related to the SEASAT observational

epoch are necessary.
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3.2 Tidal Arguments

The explicit expressions for the equilibrium tidal arguments

will be developed in a way similar to Table 2 of [US] with a few minor

changes. One change pertains to the constant part "u" which is presently

expressed numerically (in 0 ) and represents the SEASAT observational epoch.

With regard to the computation of at~, the variable part of the argument

(in Table 2 of [US] denoted as V), UT ±12 hours is used instead of T, the

hour angle of the mean sun at Greenwich at the time of the tidal evalua-

tion. Since all the quantities will be considered as given in degrees

instead of hours, the following applies:

T =UT ±1800 , (36)

where UT (in 0)is obtained by multiplying UT (in hours) by 15 (0/hour),

etc. The other two variables needed for the evaluation of a! at Green-

wich for the presently discussed constituents are h, the mean longitude

of the sun, and s, the mean longitude of the moon. In terms of local --

rather than Greenwich -- arguments, UT is replaced by UT +X, where X

(in 0 ) is the customary east longitude of the point where the tidal evalua-

tion is sought, symbolized by

local argument ... UT-o UT + X .(37)

In order to indicate the computation of the equilibrium tidal arguments

at Greenwich, Table 2 has been constructed listing these arguments in

two parts (see its second column), and up; the final argumienit is,

ci.. + u. (38)
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CONSTI- GREENWICH ARGUMENT SPEED -
TUENT ... - - +u. 0/day 0/hour Jan O. 51900 PERIOD

K UT+h+900  -0.370 360.985647335 15.04106864 189.6966780 23.9345 hr1
0 UT-2s+h-900  +0.500 334.632853797 13.94303557 188.8218330 25.8193 hr
------------------------------- -------------------- ---------

M 2UT-2s+2h -0.07o 695.618501132 28.98410421 18.5185110 12.4206 hr

S2  2UT +0.00 720. 30. 0. 12 hr

Table 2

Greenwich arguments and related quantities
for selected equilibrium tidal constituents

The aj part agrees with [Schwiderski, 1980], page 172, and with

[Lisitzin, 1974], page 12.

For the explicit computation of ot', the expressions for h and

s are adapted from [US], page 162, as

h = 279.6966780 + 36,000.7689250T + 0.0003030T2 , (39a)

s = 270.4374220 + 481,267.892000
0T + 0.0025250T2

+ 0.0000020T3 , (39b)

where T is the number of Julian centuries (of 36,525 days) reckoned from

January 0.5, 1900 at Greenwich, i.e., from December 31, 1899, 12h UT.

For January 0.0, 1978 at Greenwich, the value of T is 28,488.5/36,525;

upon considering (39 a,b) one has

[h] = 279.3109760 , [s] = 166.2183220 (40)

where the brackets have been used to indicate this specific time epoch.

-44-



Near a point of expansion, i.e., certainly within a year, h and s can be

considered as linear functions of time and their speeds in O/day, etc.,

can be evaluated using the terms linear in T in (39 a,b). When con-

sidered together with (40), these speeds make it possible to compute h

and s for any instant in 1978 accurately as

h = 279.3109760 + 0.9856473350- D + 0.041068640. hr

+ 0.000684480. min + 0.000011410 -sec , (41a)

s = 166.2183220 +13.1763967690-D + 0.549016530- hr

+ 0.009150280. min + 0.000152500- sec , (41b)

where D = day number in 1978, and hr, min, sec represent hours, minutes,

seconds in UT for that day. From the formulas (41 a,b) the various rates

of change in h and s are apparent. They also confirm the periodicity of

h (365.2421988 days = tropical year) and of s (27.32158164 days = tropical

month).

The numerical values of a' at Greenwich for any instant in

1978 can be found from the general expression appearing in the second

column of Table 2. The rate of change in UT, taken in the interval 0-24

hours, is 150/hr, 0.250/min and 0.004166670/sec, while the initial values

and the rates of change in the other two variables, h and s, have been

given in (41 a,b). The required combinationsof UT, h and s thus yield

a' = 9.3109760 + 0.9856473350- D + 15.041068640. hr
1 + 0.250684480 - min + 0.004178070 , sec , (42a)

'o I = 216.8743310 - 25.3671462030. D + 13.943035570. hr
1l + 0.232383930. min + 0.003873070 - sec ; (42b)
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= 226.185307 ° - 24.3814988680. D + 28.134104211. hr
2 + 0.483068400. min + 0.008051140. sec , (43a)

= 30. hr + 0.50. min + 0.008333330. sec , (43b)

where 0, hr, min, sec were defined following (41 a,b). From these formulas

the rates of change in the arguments a' and thus also aj are apparent and

agree with Table 2 of [US] wherever they are comparable (i.e., they agree

with the values printed in [US] as "speed per solar hour" which, however,

exhibit fewer significant digits than the speeds derived above). Further-

more, these rates also agree with [Estes, 1980], page 118, and with

[Godin, 1972], page 232; they agree approximately with [Schwiderski, 1980],

page 172, [Estes, 1980], page 101, and [Lisitzin, 1974], page 12. The

rates associated with "D" and "hr" are further presented in Table 2, columns

3 and 4, respectively, under the headings 0/day and 0/hour.

The fifth column of Table 2 lists cv' at Greenwich for January

0.5, 1900 obtained, with the aid of the second column, from (39 a,b) for

T=O. One could evaluate a' at any instant also from these values upon

applying the rates listed in the columns 3 and 4. However, this would

lead to a slight loss of accuracy even if sufficient digits are used in

the arithmetic, due to neglecting the terms in T2 (and T3 ) inherent in

the formulas for h and s in (39 a,b). By comparison, the terms in T2 and

T 3 did enter (41 a,b) and thus also (42 a,b) and (43 a,b) developed herein

in view of SEASAT altimetry. The latter formulas are advantageous to use

not only for their accuracy, but also because they are very simple and do

not necessitate a large number of significant digits for their evaluation.
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3.3 Adjustment Using Equilibrium Formulas

The basic model equation of satellite altimetry was written in

equation (3.1) of [Blaha, 1979] as

H = R - r + d , (44)

where H represents the altimetry, R is the distance from the geocenter to

the satellite at the time of observation, d is a correction, always smaller

than 5m for the satellite altitude under 1,000 km as described e.g. on

page 28 of [Blaha, 1977] or in [Blaha, 1977'], and r is the distance from

the geocenter to a sub-satellite point on the sea surface; it is given on

page 15 of [Blaha, 1979] as

r = -' + N , (45)

where r' is the corresponding distance to the (geocentric) reference el-

lipsoid and N represents the geoid undulation. The main feature of an

earlier approach consisted in expressing N (and thus r) in terms of the

geoidal parameters only, as if the measured sea surface coincided with

the geoid. Although this model deficiency was of little consequence in

past adjustments of GEOS-3 altimetry, it will be removed from the SEASAT

altimetry model by separating N into two parts:

N = N' + N" , (46)

where N' is expressed in terms of the geoidal parameters as before, but

where N" now represents the separation between the geoid and the measured

sea surface.
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If the separation were to be expressed with the aid of the

equilibrium formulas considered presently, one would write

N" = h + h + ho + h S+ ' (47)hAo  hK 1 ho M2  h 2

with the following notations (corresponding so far to X 0):

h. = A. cos a., (48)

O j = L + Uj

where a' and thus aj are Greenwich arguments. For the permanent tide,
i

one can adopt both the local and the Greenwich arguments as

0A 0. (49)
A0

According to (37) and to the second column of Table 2, the other pertinent

local arguments (allowing for any A) are

a K = a' + X - 0.371 (50a)K1 K1 + ' Q7

a0  = a6 + X + 0.500; (50b)

= ' + 2x - 0.070, (51a)

t S ' + 2X . (51b)

In their general form, the quantities 011 appear in the second column of

Table 2; for their numerical evaluation one can take advantage of equations

(42 a,b) and (43 a,b) which have been tailored for the use with SEASAT

altimetry.
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The amplitudes A. for the equilibrium constituents A0, KI,

O1, M2 and S2 can be adopted, with a modification to be explained, from

equations (18), (26), (30), (34) and (35), respectively:

AA = c - 0.1073m (1-3 sin 2
0) ; (52)

A0

AK = c - 0.1248m sin2o , (53a)

A0  = c - 0.0811m sin24 ; (53b)
01

AM = c 0.2515m cos2  , (54a)
2

AS = c 0.1127m cos 2  . (54b)

If strictly the equilibrium tide in conjunction with a rigid earth were

considered, the above constant c would be

c = 1 . (55a)

If the equilibrium formulas should allow for the earth's deformation,

according to (7) one could adopt

c = 1+k = 1.29 . (55b)

If, in addition, discrepancies between the actual and theoretical tidal

magnitudes should be taken into account, equation (11) suggests the adop-

tion of

c ( +k)e 4.8 . (55c)
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It should be noted that in practical adjustments this (or a similar) factor

will .ventually hP u',ed only in conjunction with the long-period con-

stituents for which it was originally deduced (see equation 10 and the

text preceding it). However, at this point one can adopt (55c) as a

practical value for evaluating all of (52), (53 a,b) and (54 a,b).

It follows from the foregoing that if the altimeter adjustment

should take into account the tidal elevation N" from (47), and if the

equilibrium model in some form should serve for this purpose, the individ-

ual values of h. could be computed from (48) with Aj given in (52),

(53 a,b), (54 a,b), and with a. computed as specified in (49), (50 a,b),

(51 a,b) and in the text that followed. A practical value for c could

be adopted from (55c). Such N" could then serve as a simple correction

to be added to the value of N' computed customarily through geoidal para-

meters. However, as will be described in the next paragraph, one can go

one step further and consider the tidal amplitudes as adjustable quanti-

ties. For example, a set of parameters (point-mass magnitudes) present

in a regional adjustment of satellite altimetry could be augmented by

five parameters representing the A0, KI, 01, M2 and S2 constituents. It

would not then be crucial whether or not c from (55c) is accurate; the

adjustment itself would provide the corrections to tidal amplitudes

which, in effect, would produce separate c's for the individual tidal

constituents in the region of interest.

The motivation for an adjustment of tidal amplitudes, Ai. is

offered on page 25 of [Lisitzin, 1974]:
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Charts representing such surveys for a given tidal
constituent, for example M2 or Ki, contain the cor-
responding co-tidal lines, which join all the points
for which high water of the constituent concerned is
obtained at the same time. The distribution of the
amplitudes in the oceans, represented by the tidal
co-range lines characteristic of a given amplitude,
is a task which is still more difficult.

The above statement concerns especially the diurnal and semidiurnal con-

stituents. However, the motivation for adjusting also the amplitudes of

the long-period constituents is apparent from the presence of an approxi-

mate average factor e in (10), indicating that the actual amplitudes

could be much larger than those found from the theory. In adopting the

model equation (48), namely

h. = A. cos aj , (56)

with the appropriate Aj given in (52)-(54b) together with c in (55c), and

the aj given in (49)(51b), etc., the adjusted hj is

h = h. + AAj cos aj

or

0 h hP + h ,(57a)

P. = AA./Aj , (57b)

where P. is an (adjusted) parameter; the adjusted amplitude is

A. = A. + AA A(1+P) (57c)
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From (57a) it is clear that this type of extension to the alti-

metry model is very simple to perform. According to (47), the adjusted N"

Na=hAPA + hK1PK1 + h0 1P01 + hM2PM2 +h s2Ps 2

+ (hA + hK + h0  + hM + hs2) , (58)

where the quantity inside the parentheses could be called a "correction";

if there is no adjustment contemplated, this correction would indicate,

very approximately, the separation between the geoid and the sea surface

at the place of observation. The formula (58) represents a part of an

observation equation to be joined to the corresponding expression for N'

and, eventually, to the altimeter observation equation along the lines

of (44), (45) and (46). In particular, -(hA + hK + h0 1 + hM2 + hs )

should be added to the previously computed constant term and

[-hA , -hK1, K , - hM , -hs 2] should augment the row of the pertinent

observation equation, while the column-vector [PAo, PK, Poil PM2' PS 2 ]

should augment the column of the parameters entering the adjustment. Each

of the new parameters (P . etc.) can be weighted at its initial value,

in this case the zero value. A "loosely" weighted parameter corresponds,

for example, to

ap = , (59)

which indicates, according to (57b), that the sigma attached to AA could

be quite large, in particular, that it could have the magnitude of the

amplitude itself. In some applications one could require that the
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amplitude factor (1+P.), and thus P., should be the same for certain con-

stituents. This will be explained in connection with a more practical

adjustment model to be considered next.
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3.4 Practical Tidal Adjustment

Ihe tidal adjustment described in the last section could be

.dopted for SEASAT data reductions if the equilibrium model well ap-

proximated the actual situation, except perhaps for the amplitude factor

(1 +Pj). Unfortunately, this is not the case in general. The actual

diurnal and semidiurnal constituents show large deviations from such a

model in more than one respect. Nevertheless, the past development is

useful for the long-period tidal adjustment. Presently, this statement

applies to A so that (57a) reads

ha h P + h (60a)
A0 A0 A0 A0

where, in agreement with (49), (52) and (55c)

hA = 0.515m (1-3 sin 2€) (60b)
A0

One notes that the incorporation of A in some form is important because

the permanent tidal deformation is not included in the J2 coefficient of

the earth's gravity field (the dynamic form factor of the earth).

With regard to the diurnal and semidiurnal constituents, a

solution of the dynamic equations leads to a more realistic representation

of the tidal phenomenon than in the case of the equilibrium model. As

outlined in [Lisitzin, 19741, pages 24 and 25, these equations (5, 6 and 7

in this reference) take into account, in addition to the astronomical

tide-generating forces, also the Coriolis force, the existence of con-

tinents, the effects of bottom friction, viscosity, etc. Eventually,
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the solution of these equations (they correspond essentially to equations

Al in (Estes, 1980]) results in the determination of spherical-harmonic

tidal coefficients. For a given tidal constituent, these coefficients

lead to an expansion similar to equation (3) of [Estes, 1980]. This

formulation is described with the aid of the following model:

= A cos(. - p) i A. cosj cosoj + A. sini sincj, (61)

where

j = constituent height observable by tidal gauges,

j = Greenwich argument of the constituent,

A. A(@,X) = amplitude of the constituent,

j (,) = phase angle of the constituent.

The longitude (A) of the place of observation is not explicitly needed in

aj since it is included in 4)j. The angles at are thus computed as in (50a)-

(51b), except that X in these equations is suppressed.

Equation (61) is reformulated to read

&j = a cosaj + b. sinai (62a)

where
(62b)

aj aj(O,X) = A. cosj = m (aj cos mX +b. sin mX)P (sin¢),
n m 3nm 3nm nm

(62c)
b. E b (¢,X) = A. sinip. = (cn cos mX+dn sin mX)P (sino),

nm 3nm 3nm nm
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from which it follows that

A. = (a. + b2) , (62d)

cosipj aj/Aj , sinai = bj/Aj. (62e)

In these formulas a.nm , etc., are the spherical-harmonic tidal coeffici-

ents of degree and order (n,m) associated with the constituent j, and

Pnm(sin4) are the (conventional) Legendre functions in the argument sin¢,@

being the geocentric latitude.

The above model will now be related to the one featuring h.

in the role of the "geocentric tide". This h. behaves approximately as

indicated in (9a). Further analysis of this relationship will be pre-

sented in the next report. When applying (9a) to the individual constitu-

ents, one obtains

h 3 c j (63a)

where

c = (1+k)/(1+k-h) = 1.93 . (63b)

The adjustment model thus becomes

hj c' =j c'(aj cosaj + bj sinai)

c'(A. cosIJ cosaj + Aj sln~j sina.)
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If dA. is the correction to Aj, one has

a = h. + c' dA (cosqj cosi + sin*j sinj)
J i J

or, in analogy to the development in the last section,

a = h.P + hi , (64a)

P. = dA./Aj , (64b)

A A. + dAj Aj(I+Pj) , (64c)

where h. is computed as

j= ¢(aj cosaj + bj sinj) ; (64d)

aj,bj were defined in (62 b,c), C' was given in (63b) and aj was described

following (61).

Upon collecting the results (including the A constituent in

60 a,b), one notices that the adjustment could proceed exactly as outlined

in (58) and the text that followed. However, the diurnal and semidiurnal

constituents could now be associated with a smaller sigma than that of (59)

because the present model is likely to describe the actual situation much

closer than the previous one. Although (59) could be still used in con-

junction with AO, the sigma associated with K1, 01, M2, S2 could be adopted,

for example, as

p = 0.5. (65)
Pi
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This quantity is again associated with the zero initidi value of the para-

meter P..* A statement made previously with regard to c in (55) can now

be repeated for c' in (63b). In particular, it is not important that

this quantity be exceedingly accurate because the adjustment will provide

a correction to the tidal amplitude for each individual constituent, re-

sulting in the amplitude factor (10P. which can directly compensate for

a possible deficiency in c'.

In the above adjustment, one might wish to stipulate that the

amplitude factor for certain constituents should be the same. Such a

constraint would necessarily lower the flexibility of the tidal adjustment

and thus may not be exercised in practice. Be that as it may, the con-

straint would stipulate that the corresponding P.'s are equal, which can

be achieved through an observation equation attributed a large weight.

For example, if this should be done for the semidiurial constituentsM2

and S 2' one would generate the following observation equation where v P

is the residual:

v P = -M p +0, (66a)

a P= small (ex.: 0.01) .(66b)

If the equality between Pm2and P5S above were not a stringent requirement

but a property to be satisfied only approximately, the sigma in (66b)

would be made larger.

The next report will describe a useful extension to the

practical tidal adjustment in that also the phase angle, in addition to

the amplitude, will be considered adjustable. Each constituent will then
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have associated with it, independent of the geographic location, one

amplitude factor and one phase correction. Since the model is nonlinear

insofar as the phase angle is concerned, the smallness of the corrections

to both parameters (P. j) will become important. This means that the

adjustment model will have to be reasonably accurate, which will warrant

a discussion with regard to the coefficient c', as well as to ocean

loading effects and other phenomena.
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3.5 Possible Inclusion of Other Sea Surface Effects
in the Satellite Altimetry Model

Some sea surface effects which are not due to the tide-

generating forces of the moon and the sun, but which could be included

in the presently discussed satellite altimetry model will be now briefly

described.

Chandler effect. This category encompasses the variations in

sea level due to the motion of the true celestial pole (the instantaneous

axis of the earth's rotation) with respect to the earth's crust. The

character of the sea level changes is similar to that of long-period

tidal constituents, the period being now about 14 months. According to

[Lisitzin, 1974], page 52, the value of 6V, the potential of the deform-

ing force, is

AV = - w 2 a2(x cosA + y sinX) sin 26

where w is the angular speed of the earth's rotation, a is the average

radius of the earth, 6 and X are the co-latitude and longitude of the

point of interest, respectively, and x, y are the customary rectangular

coordinatesof the instantaneous pole with respect to an average position.

In order to obtain an equilibrium formula under the hypothesis of rigid

earth, the above value would be divided by , the average gravity. As

in equation (7), a "geocentric tide" formula corresponding to a deform-

able earth would follow upon multiplying this result by (1+k). Similar

to (11), an "empirical" formula can be obtained by multiplying the

latter by a factor "e", suggested in [Lisitzin, 1974] to be, in this
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case, about 5 on the average. It appears that the maximum amplitude

computed with the empirical formula may reach a few centimeters. Because

of this small magnitude and because of a relatively short life-span of

SEASAT the Chandler effect has not been considered as subject to adjust-

ment. It could be, however, translated into a correction to altimeter

measurements if one chooses to take this effect into account.

Atmospheric pressure effects. The sea level reacts, in prin-

ciple, to changes in atmospheric pressure like a reverse barometer.

When the pressure rises the sea level decreases and vice-versa. In ad-

dition to local and short-term variations which are not considered here,

there are seasonal variations of this kind that can be significant. In

fact, due to the short life-span of SEASAT which thus functioned essen-

tially only during "one season", neglecting these variations could result

in systematic errors in global as well as local geoid determinations.

Fortunately, seasonal or even monthly maps of sea level changes due to

this effect exist. One or more of these maps can be digitized and a cor-

rection, to be applied to an altimeter measurement, can be estimated ac-

cording to the location of the observation point (and the date, in case

an appropriate monthly map should be selected by the computer).

The needed positional information can be computed as a matter

of course either before or during the altimetry adjustment process. The

data stored on magnetic tapes include the arc's ID from which the date

and time for the epoch are obtained, as well as the arc's state vector

(s.v.) parameters, the time of each measurement with respect to the epoch,I and the measurement itself. From the s.v. parameters and the time of
each event the foot-point latitude and longitude are computed in the
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orbital integrator. Since the geographic coordinates are needed only

very approximately for this purpose, a reduced set of (2,2) spherical-

harmonic coefficients could be employed if one decided to apply the

correction beforehand, at some preprocessing stage.

Water density effects. The most important sea level effects

considered in this category are due to water temperature and salinity,

which may vary from ocean to ocean. Even if one could eliminate or

determine mathematically all the significant variations in the sea sur-

face, such as the astronomical effects, various seasonal and local ef-

fects, etc., the resulting "static" sea surface would not coincide with

the static geoid as the datum of height. In particular, this surface

would not be equipotential. Since the spherical-harmonic (S.H.) model

of satellite altimetry implicitly assumes such an equipotential surface,

a least-squares adjustment would result in certain deformations to both

the S.H. potential coefficients and the altimeter observations, even if

they were errorless a-priori. In other words, one would be in the

presence of a modeling error which the adjustment would accommodate in

the least-squares sense.

The departure of such a "static" sea surface from an equipo-

tential surface comes to light when the mean sea level (MSL) is scruti-

nized in terms of geopotential numbers. The geopotential numbers serving

to express potential differences are usually measured in geopotential

units, g.p.u. (1 g.p.u. = 1 kgal meter). The g.p.u. correspond to with-

in 2% to the height above the geoid in meters; in particular, 1 g.p.u.

corresponds to 1.02m. Along these lines, the MSL is 0.25 g.p.u. "higher"

in the northern hemisphere than in the southern hemisphere. With the
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above definition in mind, one can refer to one ocean as being higher than

another in linear units. This difference of 0.25m could be due to the

fact that in the South Pacific Ocean water contains more salt than in the

North Pacific Ocean and, further, that the North Atlantic Ocean is warmer

than the South Atlantic Ocean. Additional differences in height exist.

Because of the water density differences, the Pacific Ocean is on the

average 0.7m higher than the Atlantic Ocean. But since the highest MSL

occurs in the western parts of all oceans, the difference across the

Panama canal is only about 0.2m. The Indian Ocean lies approximately

between these two oceans insofar as the heights are concerned. Toward

the poles there is a decrease in height. The MSL in adjacent and Medi-

terranian-type seas is generally lower than in the oceans; for example,

the difference in the MSL between the Atlantic Ocean and the Mediterranian

Sea is about 0.3m, concentrated around the Straights of Gibraltar.

It appears that the geoidal results can improve if this know-

ledge is digitized and, subsequently, applied in the form of a correction

to altimeter measurements. The positional information needed for the

evaluation of this correction is readily available, as already explained

in connection with the atmospheric pressure effects. The size of this

correction would be chosen in such a way as to make the geoid correspond

to an average geopotential number associated with the MSL. In some oceans

the departure of the "static" sea surface from an equipotential surface

may not be sufficiently well known. It may then be desirable to subject

it to a sea surface slope adjustment and, eventually, a vertical shift

adjustment, following the approach outlined in Section 5.3 of [Blaha, 1980].
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In addition to an average effect of water temperature and

salinity discussed above, seasonal effects are also of interest. The

cause of the most important sea level changes in this category are the

temperature changes. According to recent results, the average ranges

of sea level variations in this group are on the order of 11cm, and

maximum ranges may reach about 25 cm in the regions north of Bermuda.

The changes due to the salinity effect are usually small, ranging under

5 cm. In order to compute appropriate corrections, the method of

digitized maps (monthly, etc.) could be employed either for each effect

separately or for both effects together.
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4. CONCLUSIONS

Several improvements recently designed for the satellite altimetry

adjustment algorithm were described in Chapter 2, dealing specifically with

a global adjustment of SEASAT observations. A criterion was presented

stipulating that the length of individual satellite arcs should not exceed

7 minutes in duration. Its aim is to counter the inherent modeling error

of the short-arc mode felt mainly at satellite points far from the arc's

epoch, due to the presence of errors (including the truncation) in the

spherical-harmonic (S.H.) potential coefficients entering the orbital in-

tegrator as constants. Another criterion was designed with regard to a

minimum length of a satellite arc. It was suggested that only the arcs of

at least 50.4 seconds in duration (or 30 in angular measure) should enter

the adjustment since shorter arcs could absorb some of the geoidal detail

through the corrections to the state vector (s.v.) parameters. The ground

tracks of arcs exceeding 50.4 seconds in duration will intersect, in

general, with ground tracks of three or more crossing arcs and will assure

a cantelever effect in the geoidal adjustment thereby preventing undue

deformation.

A practical feature providing for a reasonable selection of ob-

servational density along a pass was developed, indicating that every 8th

observational point entering the adjustment is sufficient to represent

adequately SEASAT capabilities. In this way, the separation between mea-

surements along the tracks is o while the (fixed) separation across the

tracks is 10. This allows for both sufficient filtering (adjustment) in
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the observations and sufficient detail in case geoida! profiles are to be

plotted along the ground tracks. Another feature, giving rise to the so-

called "observed" geoid, was designed specifically for such plotting. It

uses the original altimeter measurements in combination with the adjusted

,'.v. parameters. The "observed" geoid thus contains the high-frequency

information present in the measurements, but is improved overall through

the reduction of orbital errors achieved in the global adjustment.

Significant savings in terms of computer run-time were achieved

through a reduction in the number of constants entering the orbital inte-

grator. Originally, these constants corresponded to a given (truncated)

set of S.H. coefficients used in the geoidal adjustment. However, for the

needs of the orbital integrator (only), this set can be further truncated,

for example, from the original (14,14) set to a new (10,10) set. This

means that instead of 225 constants merely 121 constants are used to com-

pute the satellite positions. The criterion guiding this development was

the need to preserve the high quality of SEASAT altimetry. It was con-

cluded that additional truncations to an (8,8) set (i.e., down to 81 con-

stants) would also be possible in some cases.

A consideration was given to the possibility of reducing the

number of s.v. parametersfrom six to four per orbital arc. However, it

was concluded that only insignificant computer savings would be realized

while, on the other hand, the rigor of the short-arc altimetry moiel would

be compromised, especially for eccentric satellite orbits. The original

short-arc algorithm was therefore retained without modifications.

During past GEOS-3 data reductions the tidal effects were
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neglected due to the one-meter level of observational noise. In conjunc-

tion with SEASAT whose noise, ephemeris, etc., are greatly improved with

respect to the GEOS-3 system, these effects can no longer be disregarded

in general. The tidal effects can then be considered in the first (global)

adjustment, in the second (regional) adjustment designed to model the

residuals from the first adjustment via point-mass parameters, or in both

adjustments. If they were to be considered only in the regional adjust-

ment of SEASAT altimetry, they should be fully reflected in the residuals

from the global adjustment. However, this might not be possible in many

cases because of the relatively weakly constrained s.v. parameters which

could easily absorb some of the tidal effects into their vertical com-

ponent (one-sigma in the vertical direction of the satellite ephemeris

used is about 1.6m). One could circumvent at least a part of this problem

by artificially decreasing the positional sigmas of the s.v. parameters at

a latter stage of the global adjustment in which essentially the residuals

alone would be affected. Such a process would be contingent, among other

things, upon an excellent quality of the SEASAT observational system

(this was indeed confirmed in recent real data reductions). This option

is available in the adjustment algorithm, but a need for it will be less

extensive than what might have been anticipated. The reason for this stems

from the methodology adopted for the development of tidal adjustment,

which is to become a part of both the global and the regional SEASAT alti-

metry adjustment.

The tidal and other sea surface effects are treated in Chapter 3.

They are first divided into the following categories:
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Astronomical contributions: long-period tides, diurnal
and semidiurnal tides, Chandler effect, variations of
the speed of the earth's rotation;

Meteorological contributions: atmospheric pressure
effects, wind effects, evaporation and precipitation;

Oceanographic contributions: water density effects,
currents;

Vertical movement of the earth's crust;

Melting and forming of continental ice, etc.;

Coastal and other local phenomena;

Other phenomena.

The most important sea surface effects for the present analysis

are the long-period tides and the diurnal and semidiurnal tides of the

above astronomical contributions; these will eventually comprise the tidal

adjustment within theSEASAT altimetry adjustment. Of the other effects,

only the Chandler effect, atmospheric pressure effects,and water density

effects were considered in Chapter 3, mostly in the form of a correction

which could be applied to SEASAT altimeter observations. The remaining

effects, briefly described in Appendix 4, were eliminated altogether from

consideration.

The basis for treatment of tidal effects in Chapter 3 was pro-

vided by the theory of equilibrium tides. According to their relative

importance, the tidal effects were divided into two groups, the first de-

scribee herein and the second to be described in the next report. The

first group includes the tidal constituents denoted as A0, K1, Oi, M2, S2,

while the second group includes the constituents symbolized by Mf, Mn, SSa,

P1 9 N2' K2. Eventually, 11 tidal constituents will be incorporated into

the SEASAT altimetry adjustment, recapitulated as follows:
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Long-period: Ao(constant), Mf(semimonthly), ri(monthly),
SSa(semiannual);

Diurnal: K (declinational luni-solar), 01 (principal
lunar), P1 1principal solar);

Semidiurnal: Mi(principal lunar), S2(principal solar),
N2 (ecliptical Tunar),K 2 (declinational luni-solar).

The tidal amplitude was considered to be the most important

element in a tidal adjustment. An adjustment algorithm for this quantity

was described, in Chapter 3, both with regard to the equilibrium tidal

model and to a "practical" tidal model; the latter is given in terms of

spherical-harmonic tidal coefficients obtained from a solution of the

"dynamic equations". The tidal arguments are the same in both these

models. An efficient algorithm for their computation was given in terms

of the Universal Time (U.T.), in addition to the date and the geographic

coordinates of the point under consideration. The tidal model where the

phase angle is also subject to adjustment will be described in the next

report. In it, the ocean loading effects and the relation between the

"geocentric tide" sensed by the altimeter and the "measured tide" sensed

by a tidal gauge will also be discussed, as well as an efficient way to

incorporate the "practical" tidal model into the present satellite alti-

metry adjustment algorithm.
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APPENDIX 1

NOTE ON A GLOBAL R.M.S. MISCLOSURE OF SEASAT ALTIMETRY

The parameters in a global adjustment of SEASAT altimetry

are the spherical-harmonic (S.H.) potential coefficients and the state

vector (s.v.) parameters. In the real data reductions described in

[Hadgigeorge et al., 19813, the former consisted of a (14,14) subset

from the Goddard Earth Model GEM 10 and the latter were supplied by the

NSWC precise ephemeris. The reference (normal) gravity field parameters

were those recommended by IUGG/IAG [1975]. Both adjustable groups of

parameters (S.H., s.v.) in the global phase were weighted according to

their reliability, while the reference field parameters were taken es-

sentially as fixed (either completely fixed or heavily weighted).

However, in order to ascertain the influence of various fac-

tors in the SEASAT altimetry on the total model variance defined below as

C2 total, only the misclosures (constant terms) in the observation equa-

tions are used; the total model variance is represented by the r.m.s. mis-

closure as gathered from all the SEASAT passes whose length was re-

stricted to 7 minutes in duration. The basic relationship in this analysis

with self-explanatory notations is presented as follows:

2 0
2  + 02 + 

2  +o2 +a 2
atotal truncation ephemeris altimetry terr. param. algorithm

(radial dir.) (noise) (S.H., ref.) (short-arc)

The theoretical error caused by the truncation beyond the (14,14) set of

S.H. coefficients is obtained from the covariance function (this function
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serves to compute degree variances for geophysical quantities, here geoid

undulations). The sigma, computed with the aid of equations (10) and

(25a) and Table 7 of [Tscherning and Rapp, 1974], is

atruncation = 4.887m.

The sigma for the ephemeris (in the radial direction) has been

given as

Cephemeri s = 1.6m.

The sigma associated with the altimeter noise for SEASAT is usually listed

as being between 0.1 and 0.2 meter; to be on the conservative side, one

may take

Ualtimetry = 0.2 m.

The variance from the last two sources of a2 certainly contribute tototal
its final value; if they are left out from these considerations the latter

will be too optimistic, provided of course that the other variances are

realistic. This has been examined upon considering

"terrestrial parameters 0 algorithm = 0

The result obtained with all the above values is

OtotaI = 5.15m.

However, the estimate of this quantity through the r.m.s. misclosure is

a total = 3.66m.

This indicates that the theoretical value of 5.15m is not overly optimis-

tic, to the contrary, that it is too high when compared with the value

-71-



obtained from the real data gathered over all the world's oceans with

SEASAT.

The above result prompts the following commients. It is confirm-

ed that the terrestrial parameters (the 14,14 subset of GEM 10 coefficients

and the reference field parameters) present in the adjustment model are of

excellent quality, and that assigning a zero sigma to this source of error

is probably not far from the reality. A similar statement could be made

with regard to the short-arc algorithm, in particular, with regard to the

errors commiitted in the process of orbital integration with the given S.H.

potential coefficients upon adhering to a seven-minute arc criterion. The

high quality of SEASAT altimeter measurements and precise ephemeris is also

confirmed. Finally, in considering that the real-data estimate of the total

model sigma is appreciably lower than the theoretical value, the possibility

exists that the covariance function used in computing the theoretical sigma

due to the truncation may be too conservative, at least insofar as the geoid

undulations for relatively low degree and order truncations are concerned.
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APPENDIX 2

EFFICIENCY ANALYSIS FOR A REDUCTION IN THE NUMBER
OF STATE VECTOR PARAMETERS

The observation equation system of satellite altimetry

associated with an i-th arc can be written, in matrix notations, as

V. = A.X. + A.X + Li , (A2.1)

where

Vi = vector of n residuals on the i-th arc (containing
n observations),

= vector of corrections to m terrestrial parameters
(here a truncated set of spherical-harmonic, S.H.,
potential coefficients),

= vector of corrections to 6 state vector (s.v.)

parameters on the i-th arc,

Ai = n xm design matrix associated with X,

A = n x6 design matrix associated with Xi,

Li = vector of n constant terms.

A more explicit form of the arrays in (A2.1) can be found, for example,

in Chapter 2 of [Blaha, 1977], equation (2.22) in particular.

The starting point in the analysis can be identified with the

results listed in Section 2.5 of laha, 1975]. The(diagonal)weight

matrix associated with the n observations is denoted Pi and the weight

matrices associated with X, X1 are denoted P, Pi, respectively. The total

number of arcs is s, and there is no "terrestrial source" such as gravity

anomalies present. The most important formulas in the current task are
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= (N+P 1 )-' jT ,(A2.2a)

(6,m)(A2. 2b)

X A ~~(ti NQi C) + A.a

(m,m) =

A (A2.4a)

= N.P~ 1  Q A (A2.3b)

(6,6)

(m,m)

*1 ii
(m,6)

AT i
(6,6)

(6,1)
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The corrections refer to the earth-fixed (E.F.) coordinate

system. If Yi denotes the same corrections in the "ico" system (in-

track, crosstrack, orthogonal) discussed in Chapter 3 of [Blaha, 1977],

then, in agreement with (3.22) and (3.23) of this reference, one can write

i=R i , (A2.5a)

i f : Y;(A2.5b)

the orthonormal matrix R is given as

R = [R 0 (A2.5c)
0 R

with the orthonormal matrix R of dimensions (3,3) expressed in (3.21) of

the same reference. Since T R = 1, equation (A2.1) can be rewritten as

Vi = (Ai WYi + A ii + Li

as if the first design mratrix were Ai 1T and the orbital parameters were

Vi . According to (A2.5a), the corresponding weight matrix for Yi, denoted

Pi, is

t: = R P WT 
(A2.5d)

In fact, it is this (diagonal) matrix which is given a-priori and from
which Pi in the customary E.F. system of adjustment is derived as iT Pi.
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With the above parameter transformation, (!2.2a) can be expres-

sed in terms of the new parameters, Yi, as

Qi (R Ri iT + i 0 RTNi , (A2.6a)

which, due to (A2.5c), is R(Ni +P i  Ni. Similarlyparallel to (A2.2b)

one has

A = i T i + - (A2.6b)

this expression is invariable with respect to the transformation between

Xi and Yi , and remains identical to (A2.2b) as it should. This is confirmed

immediately upon realizing, from (A2.6a), that

Ti Qi

Equations (A2.3) with Y. as orbital parameters (and thus A. WT as the first

design matrix) become

A (Ci T Ri ) , (A2.7a)

i Ri T + 1 C - i . (A2.7b)

For the same reason as above, X in (A2.7a) is seen to be invariable with

regard to the s.v. parameter transformation and is identical to its form

in (A2.3a). It can be further verified that upon pre-multiplying (A2.7b)

by ffT (A2.3b) is recovered. Finally, equations (A2.4) similarly become
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A , (A2.8a)

Z~i (Ri T + i-'+ Qii T
= + PTi ; (A2.8b)

if (A2.8b) is pre-multiplied by RT and post-multiplied by R, (A2.4b) is

recovered.

Suppose next that the first two coordinate corrections in Y.

are identically zero. This means that the in-track and crosstrack com-

ponents of the s.v. are held fixed. If the satellite orbit is approximate-

ly circular, one can then say that, equivalently, the horizontal compon-

ents of the s.v. are held fixed and only the vertical component, as well

as the three velocity components, are subject to adjustment. Since dif-

ferential changes along horizontal directions do not have any bearing on

the satellite altimetry adjustment, such a simplification could be used

as a legitimate means for reducing the computer run-time requirements.

This is indeed the main motivation for the present analysis.

An efficient way to prevent the first two elements of Vi from

entering the adjustment is to simply suppress them and be in the presence

of a new vector Yi with only four elements. The matrix RT in (A2.5b) is

effectively reduced in size to four columns, the first two columns being

likewise suppressed. ie can then proceed according to (A2.6), (A2.7)

and (A2.8), keeping in mind that the dimensions are changed as follows:

Yi (4,1), -(4,6), R T(6,4), zP(4,4), Qi-(4,m), -ji (4,4). After the

adjustment process is terminated, the s.v. parameters in the E.F. system

and their variance-covariance matrix are obtained as
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= *AT i  , (A2.9a)

(6,1) (6,4) (4,1)

T (A2.9b)

(6,6) (6,4) (4,4) (4,6)

In the following, two approaches will be compared in efficien-

cy: the original approach with no reduction in che number of parameters,

equations (A2.2)-(A2.4), and the approach bein, analyzed, where the num-

ber of s.v. parameters is reduced from six to four, equations (A2.6)-

(A2.9) with the dimensions changed accordingly. The efficiency is compared

only with regard to the number of scalar multiplications in the adjustment

algorithm. This represents, of course, only a small part of the total

computer run-time; the formation of the observation equations, the input-

output operations, etc., are not considered in this analysis. Accordingly,

the actual savings achievable with the reduced number of s.v. parameters

are likely to be much lower than those indicated by the present count.

Although the number of scalar multiplications needed for an inversion of

a (P,P) matrix is kP3 , where the coefficient of proportion (k) depends on

the method used, p3 (thus k=1) will be used here for the sake of simpli-

city. Since the weight matrix Pi is usually given as (1/a2)I, it will

be assumed that the observation equations have been "normalized" (i.e.,

divided by a) and thus the operations involving Pi will be disregarded.

Original algorithm. As indicated in the statement that fol-

lowed (A2.5d), the weight matrix P. must be computed from the diagonal

matrix Pi given a-priori. According to (3.26) of [Blaha, 1977], one can

write
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R T d_' R 0

0 RT d-I R

where d d are diagonal matrices of dimensions (3,3) and where R was

introduced following (A2.5c). In a general case of the matrix product

AB, where the dimensions of A, B are (n,m), (m,p), respectively, the num-

ber of scalar multiplications (called operations) needed to compute one

element of the resulting matrix is m; the whole process thus requires mnp

operations. If A is a diagonal matrix of dimensions (m,m) this number is

reduced to mp (i.e., the number of elements in B). Thus d- R above in-

volves 9 operations. If A and B have dimensions (n,m) and (m,n), re-

spectively, and their product is symmetric, the number of required opera-

tions is reduced from mn2 to m . n(n+1). Accordingly, the product RT (d" R)

introduces another 18 operations. The total of operations needed forP i is

then 2 - 27 = 54.

In keeping in mind the "normalization" property and the symmetry

of certain matrices, the operations needed to form the basic adjustment

building blocks are symbolically expressed as

N. "'" nm(m+l)

Ni ... 6nm
i 21n

C. "'" nm,

6n.
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In forming Qi from (A2.2a), the matrix inversion accounts for 63=216 opera-

-T
tions and the multiplication of the inverted matrix by Ni accounts for36m

operations, in addition to forming Pi' Ni and -Ni. One then has

s matrices Qi ... s(21n + 54 + 216 + 6nm + 36m) . (A2.10)

Additional operations needed in computing A are those associated

with the formation of Ni and with the computation of the symmetric matrix

Ni Qi. the latter necessitating 3m(m+l) operations, for all s arcs; the

indicated matrix inversion will then add m3 operations, for the total of

... s [ nm(m+l) + 3m(m+l)] + m3  (A2.11)

Except for the pre-multiplication by A, the computation of X involves

s(nm + 6n + 6m) operations so that the total corresponds to

X ... s(nm + 6n + 6m) + m2  (A2.12)

The formation of QiX requires 6m operations, which leads to

s vectors Xi "'" s(36 + 6m) (A2.13)

*TFinally, the product AQi accounts for 6M2 operations and the formation of

a symmetric matrix Qi(A QT) requires 21m operations; one thus has

s matrices Z.i ... s(6m2 + 21m) . (A2.14)
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Upon summing up the number of the operations in (A2.10)-(A2.14),

one can write

total ... s[306+27n+7nm+69m+4nm(m+1)+3m(m+1)+6m2] +m 2+M l . (A2.15)

The number of S.H. potential coefficients considered in this study cor-

responds to a (14,14) truncated model, or

m = (14+1)2 = 225 . (A2.16)

With this number, (A2.15) becomes

total ... s(472,131 + 27,027n) + 11,441,250. (A2.17)

Algorithm with reduced number of s.v. parameters. In analyzing

this second algorithm, one works with equations (A2.6)-(A2.9), upon taking

into account the reduction in dimensions indicated prior to (A2.9a). The

product R iKT requires the following number of operations: 21n (due to
the formation of Ni), plus 6-6-4 = 144 (due to the product NiRT), plus

6- ,4,5 = 60 (due to the remaining product yielding a symmetric matrix),

for a total of 21n +204 operations. However, this product could be form-

ed differently, as ( Ai) , where the "normalization" is understood.

The product inside the first parentheses requires 24n operations and the

final product yielding a symmetric matrix requires n. '4-5 = 10n opera-

tions, for a total of 34n operations. Although at first sight this ap-

proach seems tobe less advantageous than the one with 21n +204 operations

described above, the subsequent formation of (RA!T)Ai will necessitate

only 4nm additional operations, as opposed to 6nm +24m operatiuri
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introduced via the product RN. Accordingly, the most economical pro-

cedure in forming all the matrices Qi can be symbolized by

s matrices Qi ... s(34n + 4nm + 64 + 16m) , (A2.18)

where the 64 operations stand for the inversion of a (4,4) matrix and the

16m operations represent the final multiplication between the inverted

matrix and the matrix RN of dimensions (4,m).

With regard to (A2.6b), the formation of Ni was already seen

to require nm(m+l) operations and the product (NiRT)Qi, resulting in a

symmetric matrix, requires 2m(m+l) operations; this is repeated for all

the arcs. If m 3 is added to this number due to the indicated matrix in-

version, one obtains

... s [ nm(m+l) + 2m(m+1)] +m 3  (A2.19)

The product ( AT)Li, equivalent to RCi' accounts for 4n operations andThe

the product Q!( i) necessitates 4m operations. If the formation of

C. (nm operations) is also considered, if the whole process is repeated

for every arc, and if the pre-multiplication of A (m2 operations) takes

place according to (A2.7a), one obtains

X ... sk4n+4m+nm)+m 2 
. (A2.20)

When Y. is considered, the product of a matrix of dimensions (4,4), already

known, and a vector of dimensions (4,1), also known, represents 16 opera-

tions; the product Qi necessitates additional 4m operations, yielding
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s vectors V. "'" s(16+4m) . (A2.21)

The formation (A OT) necessitates 4M2 operation plus 10m operations

(the final matrix is symmetric), so that

s matrices ... s(4m 2 +IOnM) (A2.22)

Due to (A2.9), the following is added to the above sequence:

s vectors ... 24s , (A2.23)

s matrices x. 180s ; (A2.24)

the number of operations in these last two equations is very small compared

to that in any of the tasks carried out previously.

All the operations in (A2.18)-(A2.24) are now added, resulting

in

total ... s[284+38n+5nm+34m + nm(m+l)+2m(m+1)+4m2]+m2+m3 (A2.25)

With m given in (A2.16), this becomes

total ... s (312,134 + 26,588n) + 11,441,250 (A2.26)

Comparison of the two algorithms. Upon comparing the results

(A2.10) with (A2.18), etc., a reduction in the number of operations in

the second algorithm can be noticed at every step. However, by far the

largest number of operations is due to the formation of Ni on each arc,

resulting in snm(m+l) operations for all s arcs. This computer burden

is identical for both algorithms, as may be gathered upon comparing

(A2.11) and (A2.19). All the other computer savings materialized in the

second algorithm are largely overshadowed by this fact.
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As a matter of interest, Table A2.1, constr-ucted with the aid

of (A2.17) and (A2.26), shows the savings materialized with the second

algorithm for a few selected values of n and s. It is apparent that the

savings are not impressive, especially if one keeps in mind that the

savings listed are only a fraction of the final computer savings. Further-

more, the second algorithm impairs the rigor of the solution for non-

circular orbits, in the sense that the larger orbit's eccentricity is,

the larger errors introduced into the model with the reduced number of

s.v. parameters are. Since this price is too heavy considering the in-

significant run-time savings obtainable with the second algorithm, it is

recommiended that the original (first) algorithm featuring six s.v. para-

meters per arc in the short-arc mode of satellite altimetry be retained.

n = 100

NO. OF OPERATIONS NO. OF OPERATIONS ECONOMY REALIZED
s IN 1ST ALGORITHM IN 2ND ALGORITHM IN 2ND ALGORITHM

100 328,924,350 308,534,650 6.20%

1,000 3,186,272,200 2,982,375,250 6.40%

large ... ... 6.42%

_______ ___ ___ ____ ___ ___ n = 1000

100 2,761,354,350 2,701,454,650 2.17%

large . .. . .. 2.18%

Table A2..1

Comparison of two adjustment algorithms in the short-arc mode
of satellite altimetry

-84-



APPENDIX 3

ALGORITHM FOR ARTIFICIAL LOWERING OF STATE VECTOR SIGMAS

The algorithm which implements the artificial weight changes

for the state vector parameters as described in Chapter 2 will be now

presented in detail. It is based on the results of Chapter 2 of [Blaha,

1975]. As on page 15 of this reference, a set of observation equations

for the i-th arc is symbolized by

vi= [Ai "" ] X + Li , (A3.1)

where X represents the corrections to the S.H. potential coefficients, X.

represents the corrections to the six s.v. parameters on the i-th arc,

A. and Ai denote the pertinent matrices of partial derivatives, and where

L o -b
1i

o b

L symbolizing the computed values of the observables and L0 symbolizing

the measured values of the same quantities (here the altimeter observa-

tions). Every arc must be weighted independently, otherwise the short-

arc algorithm breaks down. In the actual computations not only the groups

of observations on separate arcs but also the individual observations are

usually weighted independently; in fact, the latter are usually attributed

equal weights. In any event, the weight matrix for all the observations
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on the i-th arc is denoted as Pi, the(original)weight matrix associated

with the s.v. parameters on this arc is denoted as Pi, and the weight
matrix associated with the terrestrial parameters (S.H. potential coef-

ficients) is denoted as P.

The formulas in [Blaha, 1975] have been adapted to the case at

hand along the following lines: all the observations are considered to

come from a satellite source (here the SEASAT altimeter), whereas the

terrestrial and other information is contained in the weighted S.H. coef-

ficients; the parameters are weighted at their approximate (input) values;

and the adjustment process does not proceed by iterations (otherwise al-

ready in the second iteration the parameters would be weighted at other

than the approximate values which would be updated from the first itera-

tion). In analogy to Appendix 2, the final formulas involving a total of

s satellite arcs thus read:

• T PiAi i "TPi Ai i .TPi Ai
N i=Ai ' = AiPA i i

i ATPi (-Li), C ATP (-L.) ;

Qi (Ni +Pi ) ' N ; (A3.2)

.i+P Ci Qi X , (A3.3a)

1 =. + + Qi A Q T (A3.3b)

i =1
S N6i) +
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s

i=1

The only formulas in which the weights should artificially
change (from P. to P) are (A3.3a) and (A3.2), the latter strictly in

conjunction with the former. This simple statement can be formally demon-

strated as follows. Since the values X are not to be affected, one can

proceed as if adjusting only Xi associated with the new weight matrix P!.
1

The set of observation equations (A3.1) thus becomes:

Vi X] + (L.i + A. x

where X is now a part of the constant terms. Upon applying the least-

squares criterion to each such set independently -- this is possible since

the sets of state vector parameters are weighted independently for each

arc and the same holds for the observations -- the new normal equations

(as yet unweighted) are

P Pi (-Li "Ai x)

or

ii i i X
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from which the solution for Xi follows as

i= i +P)- C i Q! X , (A3.4a)

Q! (Ni+Pi) - Ni (A3.4b)

Except for P, the last two expressions have the same form as their counter-

parts in (A3.3a) and (A3.2), respectively.

In the original algorithm the matrices (Ni +P i) -1 and Qi are

saved for each arc (as is the vector C.). Since (A3.3b), etc., are not

subject to the artificial weight changes, these two matrices will remain

unchanged and both (Ni+Pi) - and Q! appearing in equations (A3.4) will

be generated from them. In this process, the approximation

+ (A3.5)

can be used because the diagonal elements in P. will be many times, per-

haps hundred-fold, smaller than those in P! ; accordingly, the "over-

weighting" by P. is of no concern in this process which in itself is

only approximate. (The removal of Pi would be unnecessarily time-

consuming; the sigmas of the state vectors were originally given for the

in-track, crosstrack and approximately "up" directions, from which the

P. in the earth-fixed, E.F., coordinate system of adjustment was com-

puted.)

The advantage of heavily weighting all three positional com-

ponents of the state vectors is now apparent. If only the radial com-

ponent were so weighted -- which would be all the present artificiality

would require -- the (small) sigma of this component would have to be
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transformed from the "track" to the E.F. coordinate system of adjustment.

On the other hand, if all three positional sigmas are equal they give rise

to an "error sphere" which remains a sphere in any coordinate system.

Accordingly, if the state vector is attributed the positional sigmas of

0.16m , 0.16m , 0.16m , then P! follows immediately as a matrix whose

first three diagonal elements are 1/(0.16m)2 and all the other elements

are zero. In this particular case the weight of the radial component is

being artificially increased hundred-fold (the original sigma was given

as 1.6m).

As a result of this development the new matrices needed in pro-

ducing the artificial weight changes are generated by the following

algorithm:

(Ni + Pi - (Gi+ Pi(A3.6)

Q= (N+P) ' Gi Qi (A3.7)

where G. is computed as

G= [(Ni +Pi)'1]' (A3.8)
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APPENDIX 4

SEA SURFACE EFFECTS NOT INCLUDED IN SEASAT ALTIMETRY MODEL

The sea surface effects which are not to be included in SEASAT

altimetry model will now be briefly described. The description proceeds

according to the order in which these effects were listed in Chapter 3,

where they were also classified in seven basic categories. Their numbering

and classification need not be repeated here.

Variations of the speed of the earth's rotation. This problem

area is concerned with the mean sea level (MSL) variations which are very

small, on the order of 0.5 cm at the most. The variation in the earth's

rotation, if needed, would be computed from the variation in the length of

days. Due to the amplitude of this contribution being an order of magnitude

smaller than that of the other sources treated in the present study, it is

left out of consideration.

Wind effects. The most important direct effect of winds on the

sea surface level is the "piling up" of water in one area with the corres-

ponding depression in another area. In more pronounced cases this phenome-

non is known under the name "storm surge". However, these effects are

usually of short duration and depend on local conditions; in particular,

they are often associated with an atmospheric depression passing over an

area. Even if local phenomena were of interest, meaningful modeling of

such effects would be exceedingly difficult because of their complexity

and irregularity. The present study is concerned with sea level variations

and geoidal modeling in large oceanic area covered by SEASAT altimetry.
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Such areas are affected the least by winds whose influence is mostly felt

along the coasts (against which the water piles up), in shallow water,

estuaries, land-locked basins, or adjacent and Mediterranian-type seas.

The local characteristics of these effects constitute the main reason for

not including the storm surges among the variations whose contribution

can be countered by an appropriate correction to altimeter measurements.

Instead, these variations must be considered as simply contributing to the

"noise" of the system.

Evaporation and precipitation. These sources of sea level

changes are of little significance (especially their direct contribution

to water level in open ocean) and are therefore left out of consideration.

Currents. These effects are too complex to be included, on a

large scale, in the computation of an appropriate correction to any mean-

ingful accuracy. They are interrelated with the effects of atmospheric

pressure, wind, Coriolis force (generated by the earth's rotation) and

other factors. The changes in sea level due directly to currents are

relatively small and localized, and their effect on SEASAT altimetry

could likely be omitted even if the computation of a correction for that

purpose were feasible.

Vertical movement of the earth's crust. These changes are very

slow, resulting in sea level changes of no more than a few nmn per year.

They would be of interest for geoidal comparisons several decades apart.

However, this is not related to the present study, concerned with an im-

proved determination of the oceanic geoid with the aid of SEASAT altimetry

rather than with long-term monitoring of geoidal changes.
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Melting or forming of continental ice, etc. The contribution

of these effects is even smaller than that of the preceding item (the

sea level is affected hardly more than 1 mm per year) and is likewise

left out of this study.

Coastal and other local phenomena. The SEASAT ground tracks

cover the globe's ocean surface (except for the polar regions) in an ap-

proximate 10 x 10 grid of ascending and descending passes. Although a num-

ber of altimeter observations exist between the intersections on any arc,

the finest uniform resolution of the geoid surface one can expect to

achieve is somewhat coarser than a 10 resolution (i.e., the shortest half-

wavelength representing the geoidal detail in any oceanic area is some-

what longer than 10). A resolution which could be regarded with confi-

dence because of a reasonable amount of data filtering through an adjust-

ment process would certainly be a 20 resolution, although for some purposes

or in specific areas a finer resolution might be desirable. Be that as it

may, it is clear that small water basins of any kind, isolated from a con-

tinuous water surface where a number of SEASAT crossings exist, would be

of little value to the global SEASAT altimetry adjustment. In fact, con-

sidering that all the arcs shorter than 30 have been eliminated from the

adjustment at a pre-processing stage, small bodies of water would contain

virtually no altimeter observations (a long and narrow body of water could

contain ground tracks if it is oriented along a pass, but only in that

direction without any intersections).

Even if the orbital parameters could be considered perfect,

which would reduce the need for intersecting arcs, the coastal waters as

well as various water basins and shallow water areas would present
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problems of a different kind. These would be the areas where the irregu-

lar, complex and unpredictable effects due to the atmospheric pressure,

winds, currents, etc., would most degrade the altimeter measurements (here

these effects would be much more pronounced than in open ocean, and would

be much more difficult, if not impossible, to model or correct for). For

example, the tidal changes in sea basins, including the Mediterranian-

type seas, are very small, often reaching only a few centimeters, and are

secondary to various irregular changes such as those generated by the wind

action described earlier. Another complication which would arise in

partly or totally enclosed water basins would be due to seiches, or stand-

ing-wave oscillations.

Either of the two main reasons just described -- i.e., per-

taining to 1) length of SEASAT passes, and 2) sea level changes in small

water basins, etc., impossible to model with a meaningful accuracy --

tends to justify adjusting SEASAT altimeter data gathered over open ocean

only. The measurements gathered over water basins, if present, are not

envisioned to be eliminated from the adjustment process, but it should

be borne in mind that they are of a lower quality. In terms of the pre-

sent SEASAT altimetry model, the coastal and other local phenomena (in

partly or totally enclosed water basins, shallow water, adjacent and

Mediterranian-type seas, estuaries, etc.) are to be eliminated from any

further consideration.

Other phenomena. A typical example of a phenomenon in this

category is a tsunami, or seismic sea wave. It is a long surface wave

caused by an earthquake or other underwater erruption and it clearly con-

stitutes an isolated event. It is therefore left out of consideration.
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APPENDIX 5

REFINEMENT OF THE FORMULA
GIVING THE AVERAGE EQUILIBRIUM TIDE

The tidal undulation (N) for the equilibrium tide was treated

in the first part of [Blaha, 1980]; this reference is henceforth abbrevi-

ated as [B]. Initially, only the moon's tide-rising effect was considered

and the average earth-moon distance was adopted for this purpose. The

sun's effect was then considered along similar lines. Next, the tidal un-

dulation was averaged in time for a given point by averaging it for the

moon, for the sun, and adding algebraically the two effects. The result-

ing undulation was expressed as a function of the geocentric latitude()

as follows:

0. 148 m(cos2 -1/3) ;(A5. 1)

the deviation from the formula (5.12) in [B] consists in writing the re-

suit with three significant digits and in employing the overbar to denote

the time average. The above formula was obtained, however, through

neglecting the inclination of the moon's orbit in order to achieve simpli-

fications in the derivation. A rudimentary consideration indicated that

the error thus commiitted would not surpass 1.9 cm in the worst case. The

present analysis aims at developing a more exact formula than (A5.1) and,

at the same time, at showing that the error commnitted in (A5.1) is, in

fact, an order of magnitude smaller than previously indicated.
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The starting point in this demonstration is equation (5.1) of

[B] giving the tidal undulation at a point as a function of the zenith dis-

tance (theoretically reduced to the center of the earth) to the celestial

body in question:

N = k(cos2z + 1/3) , (A5.2)

where z is the zenith distance and k becomes either k, (for the moon) or

k2 (for the sun) as in (5.2) of [B] which had been adapted from [Bomford,

1975], page 272:

k1 = 0.267m, (A5.3a)

k 2 = 0.123m. (A5.3b)

If both the moon's and sun's effects are to be evaluated at conjunction

or opposition, it follows that the value to be used is

k1 + k2 = 0.390m. (A5.3c)

The numerical value of k is obtained, in accordance with (Bomford, 1975],

as
k = VM/I (A5.4a)

V = (3/4)Ga 2/rl = (3/4)GEa2(c/rM)(1-c/rM)'l , (A5.4b)

where T is the average terrestrial gravity, G is the gravitational con-

stant, a is the earth's mean radius, c and rM are the distances from the

earth's center to the barycenter of the earth-moon system and to the
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moon's center, respectively; M and E indicate the moon's and the earth's

masses, respectively.

In order to express z as a function of time, equations (3.1)-

(3.3) of [Mueller, 1969] were used in (5.6) of [BI yielding (5.7) essen-

tially as follows:

cos2z = -sin 26 cos2€ + cos26 cos2o cos 2h - cos26 sin 2h

+ sin26 sin2o cos h, (A5.5a)

where h and 6 are the hour angle and declination of the celestial body,

respectively. This expression can readily be developed into a more advan-

tageous form. Upon combining the second and third terms on the right-

hand side, cos 26 cos 24 cos 2h-cos 26 sin 2  is obtained; the latter term

combined with the (original) first term yields -sin 26 -sin 24 + 3 sin 26

-sin 2, so that
(A5.5b)

cos2z = 3 sin 26 sin 24 - sin 26 - sinlp + sin26 sin24 cos h

+ cos 2 6 cos 24 cos2h

From (A5.2) and (A5.5b) it follows that

(A5.6)

N = k [(3 sin 26-1)(sin 2o - 1/3) - sin26 sin2o cos h

+ cos 26 cos 20 cos2h]

which corresponds to equation (3) in [Lisitzin, 1974].

Next, formulas for the mean of a few trigonometric functions in

the form needed in this study are developed. The mean over the interval
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(T 1 T2 ) is identified by an overbar. The result for cos2t where T covers

18.6- 21 radians is now derived in detail for later use; in particular,

COS2T = 1/(T 2-T1 )f cos2- dT = (sin 2-2 - sin 2T1) /(r 2-'1) (A5.7a)

'r

which also is

cos2T = cos(Tl+ 2) sin(T2-TI)/( 2-I) . (A5.7b)

From either (A5.7a) or (A5.7b) it follows that cosZT approaches zero as

the angle T2- 1 approaches nit, where n is an integer, or as this angle

becomes large. In order to qualify the last statement, T2- i is taken

as 18.6 - 2n = 116.87. The sine of this angle is -0.5878 while COS(T1+T2)

can be taken as I or -1 in order to account for the worst possible

situation. In the present case, one such choice of T1 and T2 (in degrees)

is T 720 , r2 = 2880 + 18 • 360o, so that

2-'2 = 216' + 18 •3600 , 1 +T2 = 19 -360,

and

cos2T = 0 - 0.0050 , (A5.8)

where the second term on the right-hand side is the error in case cos2T

is considered to be zero.
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Listed below are the results for all the mean values needed;

"interval" denotes the interval A=2-T1and "large", when referring to

this interval, indicates that it is large enough so that the error is

negligible.

siT= -(cost 2 - cos-r1)At, (A5.9a)

interval n(27r) or large 0 ;

COT= (sin'r2 - sin-r1)/AT (A5.9b)

interval n(27n) or large ... cost 0;

sin2T = -! (cos 2T2 - cos T) A( 5.c
interval rimf or large ... sin2-r = 0

cos2T = ;,(sin 2T2 - sin 2t1l)/At

interval n7T or large ... cos2T = 0 (A5.9d)

interval 18.6 -t2n ... max. error =0.0050

sin 2T = (1-cos2z)

interval nnm or large ... sin 2 T , (A5.9e)

interval 18.6 -27T ... max. relative error 0.5%

Cos 2 = (I+cos2T), A.f

interval nn or large ... cosIm=
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In view of the above relations, the formula (A5.6) simplifies

when subjected to an averaging process over a long time interval, for

example several years. Whether applied for the moon or for the sun, h

covers the interval 2r thousands of times in this case. From (A5.6) one

thus obtains

(A5.10)
= k (3 sin 26- 1)(sin 2

0 - 1/3) = k (cos2o - 1/3)(1 -3 sin 26)

where use has been made of (A5.9b) and (A5.9d) with h replacing T.

Average effect of the moon. With the purpose of expressing

sin 26, equation (3.11) of (Mueller, 1969] is utilized:

sinS = cosB sinx sine + sina cose ; (A5.11)

the angles appearing on the right-hand side of this equation as well as

other elements of the moon's orbit are shown in Figure A5.1. The quantity

XN designates the (ecliptic) longitude of the ascending node of the moon's

orbit whose period is approximately 18.6 years. From the figure it fol-

lows that

= XN + X' (A5.12)

The period of K is 27.3 days which means that the AK interval can indeed

be assumed to be large when averaging over several years, in particular,

over the 18.6 years just mentioned. The motivation for adopting this

averaging frame stems from the fact that "... the analysis of the more

important tidal constituents in the oceans should cover a period corres-

ponding to the revolution of the node of the lunar orbit, i.e.,
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approximately 19 years" as stated on page 13 of [Lisitzin, 1974]. The

numerical values which will be eventually used when evaluating the moon's

effect are

c ~ 23.5, (A5.13a)

i 50 (A5.13b)

orbit

ecliptic

equinox)

celestial equator

Figure A5.1

Elements of the moon's orbit
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From the right spherical triangle of Figure A5.1 the following

relationships are deduced:

sin$ = sin i sin< , (A5.14a)

coss CO' = cosK , (A5.14b)

cosB sinX' = cosi sinK. (A5.14c)

If equations (A5.12) and (A5.14 a-c) are used in (A5.11) it follows that

sin6 = (cos i sinK cosXN - cosK sinxN) sine

+ sin i sinK cosE . (A5.15)

Upon squaring, regrouping the terms and using the double-angle sine formula,

one has
(A5.16)

sin 26 = sin 2C(cos2i sin 2K cos 2AN + Cos2K sin2 N) + cos2E sin 2 i sin 2 K

+ sin 2 c cos i sin 2 K sin 2xN

+ sin 2e (sin 2i sin 2K COSXN + sin i sin 2K sinXN)

By virtue of the formula (A5.9c) applied for K in an interval of several

years (not necessarily 18.6 years) the second line and the second term of

the third line in (A5.16) would vanish. However, the first term of the

third line would not vanish unless XN covers the interval of 18.6 years

(or multiples thereof) as is seen from equation (A5.9b). But since such

is the desired time interval, this term vanishes; in fact, due to XN

alone both the second and third lines in (A5.16) vanish.
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Upon applying (A5.9 e,f) to the first line of (A5.16) -- which

amounts to replacing all of sin 2K, cos2K, sin 2XN, cos 2XN by 12 in the indi-

cated averaging procedure -- one finally deduces

sin 26 = sin 2E + sin 2i [I -(3/2) sin 2e] (A5.17a)

and thus

1-3 sin 26 = [I- (3/2) sin 2c] [1-(3/2) sin 2i] (A5.17b)

The moon's effect is now designated by the index "1". Substituting(A5.17b)

into (A5.10), one writes

(A5.18)

NI k1 (cos2 -1/3)[i -(3/2) sin2c][1- (3/2) sin 2i]

This expression will shortly be combined with a comparable relation giving

the average tidal undulation due to the sun's effect, in order to produce

the total average undulation due to both celestial bodies.

Average effect of the sun. The declination of the sun can be

computed from (A5.11) with B=0, in particular,

sin6 = sinX sine ; (A5.19)

accordingly,

sin 26 sin 2A sin 2 . (A5.20)

Since the mean is sought for an interval of 18.6 years which corresponds

to 18.6 - 27T in A, in agreement with (A5.9e) one can take
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sin2X = , max. tel. error = 0.5%

and

sin 26 = sin 2
C, max. rel. error = 0.5%. (A5.21)

The sun's effect is designated by the index "2" and (A5.21) is used in con-

junction with (A5.10), giving

N = (cos2 - 1/3)11-(3/2) sin (A5.22)2 2/)1sn~

The maximum relative error in this expression is 0.16%, due to the error

in the last parenthesis evaluated through (A5.13a). But since the extreme

value of (A5.22) reaches only -0.062m (for the poles), its error can be

safely ignored -- it could reach O.1mm in the worst possible case. The

formula giving the average tidal undulation due to the sun's effect is

thus (A5.22).

Combined average effect. The average tidal undulation due to

both the moon's and sun's effects is obtained by adding algebraically the

two individual tidal undulations as given by (A5.18) for the moon and by

(A5.22) for the sun, namely

R = RI + N-2  (A5.23)

where N is the final combined value. The values needed in expressing

(A5.23) are
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k = k1 + k2 = 0.390m, (A5.24a)

kI = 0.685 k , (A5.24b)

which follows from equations (A5.3). Equations (A5.18, 22, 23, 24) thus

yield

q k (1- 1.03 sin 2i)(cos20 - 1/3)[1 - (3/2) sin 2 ] , (A5.25)

(3/2)k1 having been replaced by 1.03k, as per (A5.24b).

The first parenthesis on the right-hand side of (A5.25) yields

0.99218 upon using (A5.13b) and the last parenthesis yields 0.7615 upon

using (A5.13a). With k given in (A5.24a), the final result is

R = 0.147m (cos2o - 1/3) (A5.26)

It is to be noted that if the correction term 1.03 sin 2i in (A5.25) is

neglected -- and thus the moon's orbit is assumed in the plane of the

ecliptic as was done in [B] -- a relative error of only 0.8% is committed

(i.e., the difference between unity and the value 0.99218 above). This

error can safely be neglected and the formulas (5.9) and (5.12) of [B]

can be regarded as reasonably accurate. In any case, the corresponding,

more rigorous formulas are now (A5.25) and (A5.26), respectively. When

(A5.26) is compared with (A5.1), which is essentially (5.12) of [B], it

is confirmed that the difference between the values of N computed by

either formula is exceedingly small, reaching a maximum of 1.6mm for

the poles. Although the refined formula giving N (i.e., A5.26 above)

has proved to be little different from the approximate formula (5.12)
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of [B), it is useful in more respects than one: it confirms the development

in both [B] and in this study to a certain extent since slightly different

routes have been taken in its derivation; it offers a better insight into

the effect of the moon's inclination on the average equilibrium tidal un-

dulation; and it offers the means to compute the average equilibrium tidal

undulation to a high accuracy (I mm) if such accuracy is needed.
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